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Abstract
We consider the problem of dynamic deadlock prediction,

i.e., inferring the presence of deadlocks in programs by ana-

lyzing executions. Traditional dynamic deadlock detection

techniques rely on constructing a lock graph and checking for
cycles in it. However, a cycle in a lock graph only implies a

potential deadlock that can be a false alarm. In order to guar-

antee soundness (i.e. the absence of false positives), deadlock

detectors must confirm potential deadlocks through program

re-execution or constraint solving. The former technique re-

quires heuristically controlling the thread scheduler in the

hope that a deadlock is encountered while the latter doesn’t

scale to large programs. We propose a partial order DCP

(Deadlock Causal Precedence) and a vector-clock algorithm

that can identify the presence of deadlocks in a program

using DCP. Our technique is sound and the algorithm runs

in linear time, utilizing a single-pass through a program’s

trace. The experimental evaluation of our algorithm shows

that it is significantly faster and more effective than existing

state-of-the-art sound deadlock detection tools.

1 Introduction
Concurrent programs use shared resources (such as locks)

and communication primitives (such as wait and notify) to

synchronize operations performed in threads that otherwise

evolve asynchronously. When these mechanisms are used

improperly, they can introduce deadlocks. Resource deadlocks
arise when a set of threads are waiting to acquire a lock that

is held by another thread in the same set, and commonly

result from developers adding synchronization mechanisms

to prevent other concurrency bugs such as data races.

There are two main approaches to discovering deadlocks

in software. Methods derived from static analysis and model

checking analyze source code to over-approximate a set

of potential deadlocks. These include the use of type sys-

tems [5], flow-sensitive and interprocedural analysis [11],

flow and context sensitive analysis [33], theorem provers

and decision procedures [13, 14], and may alias analysis and

reachability [28]. However, the principal drawback of these

approaches is that either they are too conservative and gen-

erate many false alarms, or if they are precise, then they

don’t scale to large software. The other popular approach is
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a hybrid approach [1, 3, 6, 12, 18, 32, 34], where the trace of

a program is analyzed using lock graphs [15, 16] that reveal

the nesting structure of critical sections to identify poten-

tial deadlocks. Unfortunately, the potential deadlocks iden-

tified in this manner may not be real deadlocks. Therefore,

the first phase of identifying potential deadlocks is coupled

with a second phase where the program is re-executed in

an attempt to identify a schedule that witnesses a potential

deadlock [2, 7–10, 25]. However, re-execution to schedule

a potential deadlock has significant drawbacks. Not only is

finding the schedule like searching for the proverbial needle

in a haystack, re-execution requires knowing the original in-

puts used in the first run which may not have been recorded.

In addition, it relies on the ability to control the thread sched-

uler which is challenging when the software uses third party

libraries.

The drawback of the hybrid approach to deadlock detec-

tion can be avoided if the dynamic analysis is sound and

predictive. In other words, whenever the dynamic analysis

claims the presence of a deadlock, one can prove that there

is some execution of the program (not necessarily the one

that was analyzed) where some of the program threads are

deadlocked. Recently, the first sound, predictive deadlock

detection algorithm was proposed [20]. The approach taken

in this paper is to identify potential deadlocks using a graph

based analysis, and then, instead of re-executing the program

to schedule the deadlock, a set of constraints are identified

that correspond to a valid candidate execution of the pro-

gram in which the deadlock is reached. If the constraints are

satisfiable, then the deadlock is guaranteed to be scheduled.

Satisfiability of the constructed constraints are then checked

using an off-the-shelf SMT-solver.

The main disadvantage of the approach in [20] is that sat-

isfiability checking is computationally expensive — though

SAT solvers have made impressive advances, the fundamen-

tal problem remains intractable. This means that for a long

trace, the constraints identifying candidate schedules for a

deadlock are too large for a solver to handle. Thus, one is

forced to use a “windowing strategy” [17], where the trace

is broken up into smaller subtraces, and constraints are con-

structed for each subtrace. The windowing strategy allows

the SMT-solver based approach to scale to large traces, at

the expense of possibly failing to identify deadlocks.

In this paper, we present a philosophically different ap-

proach to sound, predictive deadlock detection. We rely on
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t1 t2

1 acq(ℓ)
2 acq(m)
3 rel(m)
4 rel(ℓ)
5 acq(m)
6 acq(ℓ)
7 rel(ℓ)
8 rel(m)

Figure 1. Trace ρ1 of a program that has a deadlock.

partial orders. Partial order based dynamic analysis has been

extensively used in the context of race detection [21, 24, 30]

to obtain sound, precise, and scalable algorithms. The idea

behind these algorithms is to identify a partial order P on

the events of a trace with special properties that ensure that

some of the events unordered by P are “concurrent”. That

is, any program that exhibits the trace being analyzed, will

generate a trace where the unordered events are consecu-

tive. Partial order based analysis algorithms are typically

“streaming” (that is, events of the trace are processed as they

appear and the algorithm does not rely on random access to

them), and run in linear time, which allows them to scale to

traces from industrial size programs. The possible downside

of these approaches is that the partial order P is typically

conservative, and is therefore, theoretically, likely to identify

fewer anomalies than SMT-solver based approaches.

The most difficult challenge in coming up with a partial

order based dynamic analysis is defining an appropriate par-

tial order. Let us focus our attention on two thread deadlocks,

which is the most common form of deadlocks in programs

— 97% of all deadlock bugs in software have been empri-

cally observed to be two thread deadlocks [27]. Consider

the program shown in Figure 1. In all traces in this paper

we follow the conventions of representing events top down,

with temporally earlier events appearing above later events,

and we denote the ith event in the trace by ei . Also, we use
acq(ℓ)/rel(ℓ) to denote the acquire/release of lock ℓ. In
trace ρ1 (of Figure 1), the program does not deadlock. But we

could reorder the events of ρ1 to obtain a deadlock—execute

e1 followed by e5. The goal of a partial order based deadlock

detection approach would be identify a partial order that

does not order e2 and e6, to argue that they can be “con-

current”. The most commonly used partial order, namely

happens before [24], is too strong to be able to detect dead-
locks even in this simple example. Happens before orders

all critical sections on the same lock, and therefore, event

e2 is ordered before e5 and hence also before e6. To detect

deadlocks, we need a weaker partial order that will not order
events e2 and e6 of ρ1 and can reason about alternate traces

where critical sections on the same lock maybe reordered.

The inspiration for our partial order based deadlock de-

tection alorithm is the order weak causal precedence (WCP)

introduced in [21], which is the weakest sound ordering we

are aware of. However, while WCP is a sound ordering for

detecting data races, it is inadequate to reason about dead-

locks. The reason is because the soundness guarantee (that

unordered events can be concurrently scheduled) only ap-

plies to the first pair of unordered data access events, and it

is not clear how to extend the proof to other events in the

presence of data races. Therefore, we introduce a new partial

order called deadlock causal precedence (DCP) that, though
similar in spirit to WCP, is appropriate for deadlock detec-

tion. Our main results states that a trace σ has a predictable

deadlock, if there are a pair of threads t1 and t2, and events

e = acq(ℓ) and f = acq(m) performed by threads t1 and
t2, respectively, such that the following properties hold: (a)

e and f are unordered by DCP; (b) locks held by t1 at e is
disjoint from the locks held by t2 at f ; and (c) lockm is held

by t1 at e and lock ℓ is held by t2 at f . The proof to establish

the soundness of DCP is nontrivial. It subtly exploits the

soundness guarantees of WCP — given a trace σ , we show
that one can construct another trace σ ′ such that the sound-

ness of DCP for deadlock detection in σ follows from the

soundness of WCP for race detection in σ ′.
Next, we show that deadlock detection using DCP has a

streaming, linear time algorithm. Our algorithm is a vector

clock based algorithm that computes the DCP partial order

on events of the trace. It is similar in structure to the vector

clock algorithm for WCP [21], and it could, in the worst case,

use linear space. We prove that our algorithm has optimal

resource bounds from a couple of perspectives. First we

show that any linear time algorithm computing the partial

order DCP must use linear space. Second we prove that any
sound, predictive deadlock detection algorithm running in

linear time, must use at least linear space. Notice that our

lower bound applies to any deadlock detection algorithm

and not just to those that are DCP-based or (more generally)

partial order based. Our lower bound proofs rely on lifting

results from communication complexity [23] to this context.

Therefore, our DCP-based deadlock detection algorithm is

the best one can hope for in terms of asymptotic complexity.

Our first DCP-based deadlock detection algorithm makes

very strong assumptions about data dependency — we as-

sume that every value read and written during the execution

can influence the control flow of the program. What if the

execution explicitly tags branching events, and one can make

weaker data dependency assumptions? Can one detect more

deadlocks? Is it is easy to incorporate such information to

get a new algorithm? We answer all these questions in the

affirmative and present a modified DCP-based algorithm

that incorporates data flow information to obtain a sound

algorithm that is more precise. Our modified DCP-based

algorithm is a two pass algorithm running in linear time.

Finally, the DCP based algorithm has been implemented

and tested on standard benchmark programs. Our evaluation

demonstrates the power of a linear-time sound deadlock

prediction algorithm — DCP allows us to scale to traces with
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billions of events, without compromising prediction power.

We observed that our approach is significantly faster than

existing contemporary techniques that rely on SMT solvers —

with speed-ups as high as 380, 000×, with a median speedup

of more than 6×.

The rest of the paper is organized as follows. Basic defini-

tions and notations are introduced in Section 2. Our partial

order DCP is defined in Section 3, and we present illustra-

tive examples that highlight features of its definition and

demonstrate its predictive power. In Section 4, we give de-

tails of our vector clock algorithm for predictive deadlock

detection. Data flow based dynamic analysis is introduced

in Section 5. Our algorithms have been implemented in our

tool DeadTrack . We present an experimental comparison

of our algorithm with other deadlock detection approaches

on standard benchmark examples in Section 6. Conclusions

and future work is presented in Section 7.

2 Preliminaries

Traces and Events. We assume the sequential consistency

model for shared memory concurrent programs. Under this

assumption, a program execution, or trace, can be seen as a

sequence of events. We will use σ ,σ ′, ρ, ρ1, ρ2 . . . to denote

traces. An event of a trace σ is a pair e = ⟨t ,op⟩1, where t is
the thread that performs the event e and op is the operation

performed in the event and can be one of r(x ) (read from

memory location x ), w(x ) (write to x ), acq(ℓ) (acquire of lock
ℓ), rel(ℓ) (release of ℓ), fork(u) (fork of threadu) or join(u)
(join of thread u). We will use thr(e ) and op(e ) to denote the
thread and the operation performed by the event e . For a
trace σ , we denote the set of threads in σ by Threadsσ , the
set of memory locations (or variables) accessed by σ asVarsσ ,
and the set of locks acquired or released as Locksσ . The set
of all events in σ will be denoted by Eventsσ . We denote the

set of events that read from and write to a memory location

x ∈ Varsσ by Readsσ (x ) andWritesσ (x ) respectively and set
Accessesσ (x ) = Readsσ (x ) ∪Writesσ (x ). We use Readsσ =⋃

x ∈Varsσ Readsσ (x ), Writesσ =
⋃

x ∈Varsσ Writesσ (x ) and
Accessesσ =

⋃
x ∈Varsσ Accessesσ (x ).Wewill useAcquiresσ (ℓ)

(resp. Releasesσ (ℓ)) to denote the set of events that acquire

(resp. release) a lock ℓ ∈ Locksσ . Further, Acquiresσ =⋃
ℓ∈Locksσ Acquiresσ (ℓ) andReleasesσ =

⋃
ℓ∈Locksσ Releasesσ (ℓ).

Traces are assumed to respect lock semantics—a lock ℓ that is
acquired by a thread t cannot be acquired by another thread

t ′ until t releases the lock. To keep the presentation simple,

we assume none of the locks are re-entrant, i.e., a lock can-

not be reacquired by an owning thread until it is released.

However, the results can be easily generalized to executions

1
Formally, each event has an associated unique event identifier. Thus, two
events performed by the same thread and performing the same operation

are considered different events. However, to reduce notational overhead we

will not formally introduce these identifiers and implicitly assume that each

event is unique.

t1 t2 t3

1 w(x )
2 acq(ℓ)
3 fork(t2)
4 acq(m)
5 rel(m)
6 r(x )
7 join(t2)
8 rel(ℓ)
9 acq(m)
10 r(x )
11 acq(ℓ)
12 rel(ℓ)

Figure 2. Trace ρ2 for illustration.

with re-entrant locking. For a release event e , the matching

acquire event for e in trace σ will be denoted by matchσ (e ).
Similarly, we will denote by matchσ (e ) to be the matching

release event (if any) corresponding to the acquire event e ,
and set it to ⊥ if it does not exist. Further, each thread is

assumed to be forked and joined at most once.

Orders on Traces. For a trace σ and events e1, e2 ∈ Eventsσ ,
we say e1 is trace-ordered before e2, denoted e1 ≤

σ
tr e2 if

e1 occurs before (or is the same as) e2 in the sequence σ .
For a trace σ , the thread order of σ , denoted ≤σTO is the

smallest partial order such that for any two events e1, e2 ∈
Eventsσ with e1 ≤

σ
tr e2, if either (a) thr(e1) = thr(e2) or ,

(b) op(e1) = fork(thr(e2)) or, (c) op(e2) = join(thr(e1)),
then e1 ≤

σ
TO e2. We will use e <σtr e

′
(resp. e <σTO e ′) when

we have e ≤σtr e ′ (resp. e ≤σTO e ′) and e , e ′. We say

that a trace σ respects a partial order ≤PO on some set of

events E ⊇ Eventsσ if for each pair of events e1, e2 ∈ E
with e1 ≤PO e2, whenever e2 ∈ Eventsσ , then we have

e1 ∈ Eventsσ and e1 ≤
σ
tr e2. Given a trace σ and a partial

order ≤σPO over Eventsσ , events e1, e2 ∈ Eventsσ are said

to be concurrent according to ≤σPO if neither e1 ≤
σ
PO e2, nor

e2 ≤
σ
PO e1. This is denoted by e1 | |

σ
PO e2.

Example 1. Let us illustrate the definitions introduced so far
on the trace ρ2 shown in Figure 2. Recall that we denote the

ith event in ρ2 by ei . Here, Threadsρ2 = {t1, t2, t3}, Varsρ2 =
{x } and Locksρ2 = {ℓ,m}. Further, Eventsρ2 = {ei }1≤i≤12,
Readsρ2 = Readsρ2 (x ) = {e6, e10},Writesρ2 =Writesρ2 (x ) =
{e1}, Acquiresρ2 (ℓ) = {e2, e11} and Releasesρ2 = {e5, e8, e12}.
Finally, matchρ2 (e7) = e2 and matchρ2 (e8) = ⊥. Let us now
illustrate the different orders using σ . Here, ei ≤

ρ2
tr ej iff

i ≤ j. e1 ≤
ρ2
TO e3 because both e1 and e3 are performed by t1.

Further, e1 ≤
ρ2
TO e5 because of the event e3 which forks t2,

and, e7 | |
ρ2
TO e12. The sequence ρ

′
2
= e9e1e2e3e4 is a valid trace

that preserves ≤
ρ2
TO but does not preserve the total order ≤

ρ2
tr .

On the other hand, the trace ρ ′′
2
= e1e2e4 does not preserve

≤
ρ2
TO because e4 ∈ Eventsρ′′

2

, e3 ≤
ρ2
TO e4 but e3 < Eventsρ′′

2

.
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Well Nesting. We will assume that all lock acquires and

releases in a trace follow the well-nesting principle that

intuitively states that a thread holding multiple locks must

release them in the future in reverse order of how they were

acquired. In the presence of forks and joins this definition

becomes subtle, and we define it precisely as follows. A trace

σ is well nested if for any acquire e ∈ Acquiresσ such that

matchσ (e ) exists in σ and for any event f with e ≤σTO f the

following two conditions hold: (a) either f ≤σTO matchσ (e )
or matchσ (e ) ≤σTO f , i.e., f is thread ordered in relation to

matchσ (e ), and (b) if f ∈ Acquiresσ with f ≤σTO matchσ (e ),
thenmatchσ ( f ) exists in σ andmatchσ ( f ) ≤σTO matchσ (e ).

Conflicting Events. Two events e1, e2 ∈ Eventsσ are said

to be conflicting if e1, e2 ∈ Accessesσ (x ) for some x ∈ Varsσ ,
w(x ) ∈ {op(e1), op(e2)}, and e1 | |

σ
TO e2. We use e1 ≍ e2 to

denote that e1 and e2 are conflicting events.

Critical Sections, Locks Held and Next Events. For an
acquire event e ∈ Acquiresσ , we say that the critical section

of e , denoted CSσ (e ) is the set { f | e ≤σTO f ≤σTO matchσ (e )}
if e has a matching release, and { f | e ≤σTO f } otherwise. Sim-

ilarly, for a release event e , CSσ (e ) = CSσ (matchσ (e )). The
outermost acquire and release events (if they exist) for a crit-

ical sectionC will be denoted acq(C ) and rel(C ). The set of
locks held at an event e ∈ Eventsσ is the set locksHeldσ (e ) =
{ℓ | ∃e ′ ∈ Acquiresσ (ℓ) such that e ∈ CSσ (e ′)}. For an event

e ∈ Eventsσ , the set of next events of e (denoted nextσ (e )) are
the ones that are scheduled immediately after e as per thread
order. That is, nextσ (e ) = {e ′ | e <σTO e ′, and ∄e ′′ · e <σTO
e ′′ <σTO e ′}. Clearly, if e is a fork event, then the size of the

set nextσ (e ) can either be 0, 1 or 2. In all other cases, nextσ (e )
is either empty or is singleton.

Example 2. In the trace ρ2 from Figure 2, the pair (e1, e6)
is not a conflicting pair of events since e1 ≤

ρ2
TO e6. However,

e1 conflicts with e10 in ρ2 (i.e., e1 ≍ e10). The critical sec-

tions in ρ2 are CSρ2 (e2) = CSρ2 (e8) = {e2, e3, e4, e5, e6, e7, e8},
CSρ2 (e4) = CSρ2 (e5) = {e4, e5}, CS (e9) = {e9, e10, e11, e12}
and CSρ2 (e11) = CSρ2 (e12) = {e11, e12}. In this trace, the set

of locks held at e1 is∅. On the other hand, locksHeldρ2 (e2) =
locksHeldρ2 (e3) = {ℓ} and locksHeldρ2 (e10) = {m}. Finally,
nextρ2 (e1) = {e2}, nextρ2 (e3) = {e4, e7}, nextρ2 (e6) = {e7}
and nextρ2 (e12) = ∅.

Correct Reordering. The goal of this paper is to perform

predictive deadlock detection, i.e., given a trace σ we want to

check if either σ or another valid rescheduling of the events

of σ exhibit a deadlock. Correct reorderings of a trace σ , iden-
tify the space of “valid reschedules” that are semantically

sound; any program producing the trace σ could produce

any of the correct reorderings under a different thread sched-

ule. For a read event e ∈ Readsσ (x ) on some x ∈ Varsσ ,
we denote by lwσ (e ) the last write event e

′ ∈ Writesσ (x )

before e in the sequence σ if it exists; and lwσ (e ) = ⊥
otherwise. A trace σ ′ is a correct reordering of a trace σ
if (a) Eventsσ ′ ⊆ Eventsσ , (b) σ ′ respects ≤σTO, and (c) for ev-

ery e ∈ Readsσ ′ , lwσ ′ (e ) = lwσ (e ). To ensure that programs

producing σ can produce each of its correct reorderings, we

require correct reorderings of σ preserve intra-thread order,

fork and join dependencies. Further, in a correct reordering

every read event sees the same value as in σ , and as a re-

sult, any conditionals in any branches encountered in the

underlying program still evaluate to the same value.

Predictable Deadlock. A deadlock happens when a group

of threads are waiting for each other in a cyclic dependency.

Predictable deadlocks happen when a trace can be reordered

to exhibit a deadlock. Formally, a trace σ is said to exhibit a

predictable deadlock of size k if there is a correct reordering

σ ′ of σ , k distinct events e0, e1, . . . , ek−1 ∈ Eventsσ , and k
distinct locks ℓ0, ℓ1, . . . , ℓk−1 ∈ Locksσ such that for every

0 ≤ i ≤ k − 1, we have

(a) ℓi ∈ locksHeldσ ′ (ei ), and
(b) there is an event fi ∈ nextσ (ei ) such that op( fi ) =

acq(ℓ(i+1)%k ).

The witness for a predictable deadlock, therefore, is a correct

reordering σ ′ of σ such that ℓi is acquired but not released

when ei is performed in σ ′ (condition (a)) and each thread

ti = thr(ei ) is waiting for the lock ℓ(i+1)%k to be released

(condition (b)).

Deadlock Pattern. A deadlock pattern of size k in a trace σ
is a tuple of 2k events ⟨e0, f0, e1, f1, . . . , ek−1, fk−1⟩ such that

there are distinct locks ℓ0, ℓ1 . . . , ℓk−1 ∈ Locksσ for which

op(ei ) = acq(ℓi ), fi ∈ CSσ (ei ), op( fi ) = acq(ℓ(i+1)%k ), and

(locksHeldσ ( fi )\{ℓ(i+1)%k })∩(locksHeldσ ( fj )\{ℓ(j+1)%k }) = ∅

for every 0 ≤ i, j ≤ k − 1. Observe that if a trace σ has

a predictable deadlock, then it also has a deadlock pattern

of the same size. However, the converse is not true. That

is, a trace exhibiting a deadlock pattern may not have any

predictable deadlock. Algorithms such as Goodlock [16] and

its generalizations [1] report deadlock patterns (also known

as potential deadlocks) in executions by constructing and

analyzing a lock graph whose nodes correspond to locks and

there is an edge from a node ℓ1 to ℓ2 if ℓ2 is acquired in a

critical section of lock ℓ1. Since deadlock patterns can be

false positives, existing approaches [2, 25, 29] resort to re-

executing the original program hoping to encounter a correct

reordering of the original trace that witnesses the deadlock.

We remark that existing Goodlock based algorithms often

miss reporting deadlock patterns ⟨e0, f0, . . . , ek−1, fk−1⟩ if, for
some i , thr(ei ) , thr( fi ) (eventhough fi belongs to CSσ (ei )
because of fork/join dependencies, like in Figure 2). This

means that other sound techniques such as [19, 20] that use

the reported patterns to confirm deadlocks can also miss

simple deadlocks arising because of such patterns.

4
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Example 3. In the trace ρ2 from Figure 2, lwρ2 (e6) = lwρ2 (e10) =

e1. Let us now consider the trace ρCR
2
= e1e2e3e9e10, where

ei refers to the ith event of ρ2. ρ
CR
2

is a correct reordering of

the trace ρ2. This is because it respects the thread-order ≤
ρ2
TO

of the trace ρ2 and the last write event corresponding to the

w(x ) in t3 in ρCR
2

is the same as that in ρ2. Next, this trace
also has a deadlock pattern of size 2, namely, ⟨e2, e4, e9, e11⟩.
Further, ρ2 also has a predictable deadlock of size 2 be-

cause of the correct reordering ρCR
2

that witnesses the dead-

lock. The events e3 and e5 in ρCR
2

correspond respectively

to the events e3 and e10 in ρ2. Here, ℓ ∈ locksHeldρCR
2

(e3),

m ∈ locksHeldρCR
2

(e5), e4 = ⟨t2, acq(m)⟩ ∈ nextρ2 (e3) and
e11 = ⟨t3, acq(ℓ)⟩ ∈ nextρ2 (e10).

3 Sound Deadlock Prediction
Partial orders are routinely used to detect predictable data

races in executions. The advantage of partial order based

dynamic analysis is that they typically have linear time (or at

least polynomial time) algorithms. However, they have thus

far not been successfully used to soundly predict deadlocks

in traces. The reason is because the design of partial order

is subtle and needs to capture reasoning about concurrent

behavior. We present the first partial order that is conducive

to sound deadlock prediction. We define the partial order

≤DCP in Section 3.1, and state its soundness guarantees (Sec-

tion 3.2). We illustrate the subtle decisions made in defining

≤DCP and demonstrate its effectiveness in reasoning about

deadlocks through examples in Section 3.3. ≤DCP, we be-

lieve, carefully navigates the competing goals of increased

predictive power and sound reasoning.

3.1 Deadlock Causal Precedence
We first define a partial order ≤CHB, inspired by the happens-

before partial order [24].

Definition 1 (Conflict-HB). For a trace σ , ≤σCHB (read ‘con-

flict HB’) is the smallest partial order on Eventsσ such that

for any two events e1 ≤
σ
tr e2 if either (a) e1 ≤

σ
TO e2, or

(b) e1 ∈ Releasesσ (ℓ) and e2 ∈ Acquiresσ (ℓ) for some lock

ℓ ∈ Locksσ , or (c) e1 ≍ e2, then e1 ≤
σ
CHB e2.

In the following definition, the composition of a binary

relation R1 ⊆ E × E with another binary relation R2 ⊆ E ×
E, denoted by R1 ◦ R2 (resp. R2 ◦ R1) is the binary relation

{(a, c ) | ∃b · (a,b) ∈ R1 and (b, c ) ∈ R2}.

Definition 2 (Deadlock Causal Precedence). For a trace σ ,
≺σDCP is the smallest relation such that the following hold.

(a) For e1 <
σ
tr e2 such that e1 ≍ e2, we have e1 ≺

σ
DCP e2,

(b) LetC1 andC2 be two critical sections on some lock ℓ ∈
Locksσ such that rel(C1) ≤

σ
tr acq(C2) and rel(C1) ≰

σ
TO

acq(C2). Further, let e1 ∈ C1 and e2 ∈ C2 be events such

that e1 ≺
σ
DCP e2. Then, rel(C1) ≺

σ
DCP rel(C2).

(c) ≺σDCP is closed under left and right composition with

≤σCHB. That is,≺
σ
DCP ◦ ≤

σ
CHB⊆≺

σ
DCP and ≤

σ
CHB ◦ ≺

σ
DCP⊆≺

σ
DCP.

t1 t2

1 acq(ℓ)
2 acq(m)
3 rel(m)
4 rel(ℓ)
5 w(x )
6 r(x )
7 acq(m)
8 acq(ℓ)
9 rel(ℓ)
10 rel(m)

t1 t2

1 acq(n)
2 w(x )
3 acq(ℓ)
4 acq(m)
5 rel(m)
6 rel(ℓ)
7 rel(n)
8 acq(n)
9 r(x )
10 rel(n)
11 acq(m)
12 acq(ℓ)
13 rel(ℓ)
14 rel(m)

Figure 3. (a) Trace ρ3 on the left; (b) Trace ρ4 on the right.

We define the partial order ≤σDCP=≺
σ
DCP ∪ ≤

σ
TO.

Remark. Definition 2 could have been defined differently

without changing its semantics. In rule (c), we could have

used HB as opposed to CHB. However, we would then have

to define ≺DCP as the smallest transitive relation satisfying

rules (a), (b), and (modified) (c), as opposed to simply the

smallest relation satisfying the conditions in Definition 2.

The vector clock algorithm we will present, follows the cur-

rent definition closely, and hence the choice.

3.2 Using ≤DCP For Deadlock Prediction
In order to check if two acquire events e1, e2 can participate

in a deadlock, we need to check if e1 and e2 are concurrent,
i.e., if there is no causal relationship between e1 and e2. We

will use ≤DCP to determine the absence of such a causal

dependence and Theorem 1 establishes the soundness of

≤DCP for the purpose of predicting deadlocks.

Theorem1. Letσ be a trace with a deadlock pattern ⟨e, f , e ′, f ′⟩
of size 2 such that f | |σDCP f

′. Then, σ exhibits a predictable
deadlock.

The proof of Theorem 1 exploits the soundness guarantee

of theWCP [21] partial order and is presented in Appendix A.

3.3 Illustrative Examples
Let us now illustrate different aspects of Definition 2 and

Theorem 1 via some example traces.

Example 4. Figure 3a illustrates the intuition behind rule (a)
of ≺DCP in Definition 2. The trace ρ3 has a deadlock pattern
of size 2 (with events e1, e2, e7 and e8 participating in the

pattern). Since e5 and e6 are ordered, any correct reordering

of ρ3 is a prefix of ρ3. Hence, ρ3 does not have a predictable
deadlock. ≺

ρ3
DCP ensures soundness by ordering e5 ≺

σ
DCP e6

(rule (a)) and this implies that e2 ≤
σ
DCP e8 because of compo-

sition with ≤
ρ3
CHB. As a result, Theorem 1 does not report any

predictable deadlock in ρ3.
5
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Based on Example 4 above, one might naïvely conclude

that simply ordering all pairs of conflicting events is enough

to ensure soundness. The next example illustrates why this

reasoning is flawed.

Example 5. Consider the trace ρ4 in Figure 3b. In this trace,

the tuple ⟨e3, e4, e11, e12⟩ constitute a deadlock pattern, and

Goodlock-based algorithms report this pattern as a potential

deadlock. Further, naïvely ordering conflicting events will

only order e2 before e9 and thus the two nesting sequences

remain unordered. However, the deadlock pattern does not

constitute a real predictable deadlock. To understandwhy, ob-

serve that any correct reordering ρ ′
4
of ρ4 that schedules the

deadlock will execute e1, e2, e8, e9 and e10. Further, in order

to preserve the last write of e9, it must also ensure e2 ≤
ρ′
4

tr e9.
Finally, to preserve lock semantics, e7 must be executed in ρ ′

4

before e8. Hence, any such correct reordering ρ ′
4
of ρ4 will

completely execute the nested critical section e3, e4, e5, e6 and
then proceed executing the nested section e11, e12, e13, e14,
thereby not resulting in a deadlock. The rule (b) of ≺DCP
in Definition 2, in fact, orders e7 ≺

ρ4
DCP e10 because of the

rule (a) ordering e2 ≺
ρ4
DCP e9. As a result we have e4 ≤

ρ4
DCP e12.

Therefore, Theorem 1 does not report any predictable dead-

lock in ρ4.

While DCP is inspired from prior work on race detection,

DCP is subtly different from these in important ways. One of

these differences is the statement of rule (b) in the definition

of ≺DCP. In particular, for two critical sections C1 and C2

on some common lock ℓ which contain events e1 ∈ C1 and

e2 ∈ C2 already ordered by ≺DCP, the releases r1 = rel(C1)
and r2 = rel(C2) are not ordered by ≺DCP if r1 ≤TO r2 (but
of course are ordered by ≤DCP=≺DCP ∪ ≤TO). This is in

sharp contrast with both CP [30] and WCP [21] where r1
and r2 are ordered by the irreflexive versions of the partial

orders CP and WCP. The following example demonstrates

the importance of this difference from earlier partial orders.

Example 6. Consider the trace ρ5 in Figure 4. The only

deadlock pattern here is ⟨e1, e2, e17, e18⟩. In this trace, we

have e8 ≺
ρ5
DCP e9 and e14 ≺

ρ5
DCP e15, giving us e8 ≺

ρ5
DCP e15

after composing with e9 ≤
ρ5
CHB e14. This means that the

two critical sections C1 = CSρ5 (e7) and C2 = CSρ5 (e13)
(on the same lock n) contain events e8 and e15 respectively
ordered by ≺

ρ5
DCP. In the absence of the additional condi-

tion (rel(C1) ≰
acq
TO (C2)) in rule (b), we would have ordered

e12 ≺
ρ5
DCP e16. This in turn, composes with the CHB edge

e2 ≤
ρ5
CHB e6 ≤

ρ5
CHB e10 ≤

ρ5
CHB e12 ≺

ρ5
DCP e16 ≤

ρ5
CHB e18 (due to

rule (c)) giving us e2 ≺
ρ5
DCP e18. However, the additional con-

dition (rel(C1) ≰
acq
TO (C2)) ensures that e2 | |

ρ5
DCP e18. Indeed,

the trace ρCR
5
= e7e8e9e10e11e12e13e14e15e16e1e17, is a correct

reordering of ρ5 and witnesses a deadlock. Hence, Theorem 1

correctly identifies a predictable deadlock in ρ5.

t1 t2 t3

1 acq(ℓ)
2 acq(m)
3 rel(m)
4 rel(ℓ)
5 acq(k )
6 rel(k )
7 acq(n)
8 w(x )
9 r(x )
10 acq(k )
11 rel(k )
12 rel(n)
13 acq(n)
14 w(y)
15 r(y)
16 rel(n)
17 acq(m)
18 acq(ℓ)
19 rel(ℓ)
20 rel(m)

Figure 4. Trace ρ5.

Observe that ≤TO as defined in Section 2 is more subtle

than intra-thread order (also popularly called program order

in the literature). Our definition incorporates dependencies

due to fork and join events. Notice, however, that one could,
alternatively, define ≤TO to be only program order and in-

stead incorporate fork and join dependencies in the partial

order ≺DCP as base rules (like rule (a)). In the following, we

will demonstrate how our choice of defining ≤TO allows us

to detect deadlocks that would have been missed otherwise,

while remaining sound.

t1 t2 t3

1 fork(t2)
2 acq(ℓ)
3 acq(m)
4 rel(m)
5 rel(ℓ)
6 fork(t3)
7 acq(m)
8 acq(ℓ)
9 rel(ℓ)
10 rel(m)

Figure 5. Trace ρ6.

Example 7. Consider the trace ρ6 in Figure 5, with a dead-

lock pattern ⟨e2, e3, e7, e8⟩. However, this is not a predictable
deadlock because any event of t3 can only be executed af-

ter e6, which in turn is only after the nesting sequence

e2, e3, e4, e5. Now let us see the corresponding DCP reasoning.

The events e3 and e8 are unordered by ≺
ρ6
DCP but are ordered

by ≤
ρ6
DCP=≺

ρ6
DCP ∪ ≤

ρ6
TO. Therefore, Theorem 1 reports no

predictable deadlock.

6
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t1 t2 t3

1 acq(ℓ)
2 acq(m)
3 rel(m)
4 rel(ℓ)
5 fork(t2)
6 acq(m)
7 rel(m)
8 acq(m)
9 acq(ℓ)
10 rel(ℓ)
11 rel(m)

Figure 6. Trace ρ7.

Example 8. The trace ρ7 in Figure 6 has a deadlock pat-

tern of size 2, namely, ⟨e1, e2, e8, e9⟩. Further, the correct re-
ordering ρCR

7
= e1e8 of ρ7 also witnesses the deadlock. If

≺DCP included fork/join dependencies, then we would have

had e5 ≺
ρ7
DCP e6, e2 ≤

ρ7
CHB e5 and e6 ≤

ρ7
CHB e9 thus giving

e2 ≺
ρ7
DCP e9. That is, including the fork dependency in ≺DCP

forces the two acquires e2 and e9 to get ordered, thereby

missing the predictable deadlock witnessed in ρCR
7

. This jus-

tifies our choice of not including such dependencies in ≺DCP.

There are no conflicting events in ρ7 and thus no two events
are ordered by ≺

ρ7
DCP. This in turn means that e2 and e9 re-

main unordered according to ≤
ρ7
DCP, and Theorem 1 correctly

declares a predictable deadlock in ρ7.

Example 9. Let us again consider the trace ρ2 from Figure 2.

This trace has a deadlock pattern ⟨e2, e4, e9, e11⟩. First observe
that while e2 ≤

ρ2
TO e4, thr(e2) , thr(e4). As described in Sec-

tion 2, existing deadlock detection tools, both sound [20] or

unsound [3] that rely on traditional Goodlock style construc-

tion of a lock graph do not identify a deadlock pattern here.

On the other hand, our definition of ≤TO, and the implied

definitions of locks held and critical sections handle this

(see Section 2). In fact, this trace has a predictable deadlock

(witnessed by the correct reordering ρCR
2

in Example 3). This

is captured by DCP as follows. The only ≺DCP orders in this

trace are e1 ≺
ρ2
DCP e6 and e1 ≺

ρ2
DCP e10 (rule (a)), and those due

to composition with ≤
ρ2
CHB (rule (c)): e1 ≺

ρ2
DCP e7, e1 ≺

ρ2
DCP e8,

e1 ≺
ρ2
DCP e11 and e1 ≺

ρ2
DCP e12. Hence, we have e4 | |

ρ2
DCP e11 and

according to Theorem 1, ρ2 has a predictable deadlock.

Let us now illustrate some important aspects of Theorem 1.

Example 10. Consider the trace ρ8 in Figure 7a. This trace

has a deadlock pattern but no predictable deadlock. Any

reordering of this trace, that respects intra-thread order and

executes both e1 and e6 (without executing the matching

releases e5 and e10) cannot proceed in the thread t1 beyond e1.
This means that the write event e3 on x will not be executed

and thus the last-write event for the read event e7 will not
be e3. DCP, on the other hand, correctly orders e3 ≺

ρ8
DCP

e7 (rule (a)). This gives e2 ≤
ρ8
DCP e8 (due to rule (b)). This

t1 t2

1 acq(ℓ)
2 acq(m)
3 w(x )
4 rel(m)
5 rel(ℓ)
6 acq(m)
7 r(x )
8 acq(ℓ)
9 rel(ℓ)
10 rel(m)

t1 t2

1 acq(ℓ)
2 w(x )
3 acq(m)
4 rel(m)
5 rel(ℓ)
6 r(x )
7 acq(m)
8 acq(ℓ)
9 rel(ℓ)
10 rel(m)

Figure 7. (a) Trace ρ8 on the left; and (b) Trace ρ9 on the

right. Trace ρ8 does not have a predictable deadlock while

trace ρ9 has a predictable deadlock.

means Theorem 1 does not report a predictable deadlock in

ρ8.
Now consider trace ρ9, which is a close variant of ρ8. Here,

while DCP orders e1 ≤
ρ9
DCP e7 and e1 ≤

ρ9
DCP e8, it does not or-

der the acquire events of the inner critical sections CSρ9 (e3)
and CSρ9 (e7) on locksm and ℓ respectively. As a result, The-
orem 1 declares that ρ9 has a predictable deadlock. In fact,

the correct reordering e1e2e6e7 of ρ9 witnesses the deadlock.

4 Algorithm for Deadlock Prediction
In this section we describe an algorithm for predicting dead-

locks using our partial order ≤DCP and Theorem 1. Our algo-

rithm (a) identifies deadlock patterns of the form ⟨e1, e
′
1
, e2, e

′
2
⟩

in the execution, and, (b) checks if the inner acquire events

e ′
1
and e ′

2
are unordered by ≤DCP. The algorithm uses vector

clocks to check if two acquire events are unordered by ≤DCP.

This vector-clock algorithm is similar in spirit to the vector

clock algorithm for detecting data races in executions using

the WCP [21] partial order. Our algorithm runs in a stream-

ing online fashion, processing each event as it is observed

in the trace, and performing necessary vector clock updates

and additional book-keeping to track deadlock patterns. In

the following, we give a brief overview of the algorithm, with

some details defered to Appendix B. Our notations for vector

clocks and associated operations are derived from [21, 30]

and can also be found in Appendix B.

The intuition behind the vector clock algorithm is to as-

sign a timestamp De to every event e in the trace, such that

the partial order imposed by the assigned timestamps is iso-

morphic to the ≤DCP partial order. This is formalized in The-

orem 2.

The algorithm maintains several vector clocks in its state,

updating different vector clocks at each event e , depending

7
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Algorithm 1: Computing the ≤DCP timestamps for different events

procedure Initialization
1 for t ∈ Threads do
2 Pt := ⊥;

3 Ht := ⊥[1/t];

4 Tt := ⊥[1/t];

5 Dt := ⊥[1/t];

6 for ℓ ∈ Locks do
7 Acqt, ℓ := ∅;

8 Relt, ℓ := ∅;

9 for x ∈ Vars do
10 Hr

t,x := ⊥;

11 Hw
t,x := ⊥;

12 Trt,x := ⊥;

13 Twt,x := ⊥

14 for ℓ ∈ Locks do
15 Pℓ := ⊥;

16 Hℓ := ⊥;

procedure acquire(t , ℓ)
17 Ht := Ht ⊔ Hℓ ;

18 Pt := Pt ⊔ Pℓ ;

19 Dt := Dt ⊔ Pℓ ;

20 for t ′ ∈ Threads do
21 Acqt ′, ℓ · Enqueue(⟨Tt ,Dt ⟩)

procedure release(t , ℓ)
22 while Acqt, ℓ · nonempty() do
23 ⟨T ′,D ′⟩ := Acqt, ℓ · Front()

24 if D ′ ̸⊑ Pt then
25 break;

26 H ′ := Relt, ℓ · Front()

27 if T ′ ̸⊑ Tt then
28 Pt := Pt ⊔ H

′
;

29 Dt := Dt ⊔ H
′
;

30 Acqt, ℓ · Dequeue();

31 Relt, ℓ · Dequeue();

32 Hℓ := Ht ; Pℓ := Pt ;

33 for t ′ ∈ Threads do
34 Relt ′, ℓ · Enqueue(Ht )

procedure read(t , x)
35 for t ′ ∈ Threads do
36 if Twt ′,x ̸⊑ Tt then
37 Pt := Pt ⊔ H

w
t ′,x ;

38 Ht := Ht ⊔ H
w
t ′,x ;

39 Dt := Dt ⊔ H
w
t ′,x ;

40 Hr
t,x := Ht ; T

r
t,x := Tt ;

procedure write(t , x)
41 for t ′ ∈ Threads do
42 if Twt ′,x ̸⊑ Tt then
43 Pt := Pt ⊔ H

w
t ′,x ;

44 Ht := Ht ⊔ H
w
t ′,x ;

45 Dt := Dt ⊔ H
w
t ′,x ;

46 if Trt ′,x ̸⊑ Tt then
47 Pt := Pt ⊔ H

r
t ′,x ;

48 Ht := Ht ⊔ H
r
t ′,x ;

49 Dt := Dt ⊔ H
r
t ′,x ;

50 Hw
x := Ht ; T

w
x := Tt ;

procedure fork(t , u)
51 Hu := Ht [1/u];

52 Tu := Tt [1/u];

53 Du := Dt [1/u];

54 Pu := Pt ;

procedure join(t , u)
55 Ht := Ht ⊔ Hu ;

56 Tt := Tt ⊔ Tu ;

57 Pt := Pt ⊔ Pu ;

upon the operation op(e ). Algorithm 1 describes these up-

dates. We briefly describe the different components of the

algorithm below.

Vector Clocks and FIFOQueues. The algorithmmaintains

vector clocks Pt ,Tt ,Ht and Dt for each thread t , vector
clocks Pℓ and Hℓ for each lock ℓ, vector clocks Trt,x , T

w
t,x ,

Hr
t,x and Hw

t,x for each pair (t ,x ) of thread t and memory

location x . Additionally, for every thread t and lock ℓ, the
algorithm maintains FIFO queues Relt, ℓ and Acqt, ℓ that re-
spectively store vector times and pairs of vector times.

Broadly, the algorithm simultaneously maintains the or-

ders ≤TO, ≤CHB, ≺DCP and ≤DCP and uses different clocks

and queues for this purpose. The clocks Tt correspond to the
partial order ≤TO. Let us denote by Te the value of the clock
Tthr(e ) right after processing the event e according to Algo-

rithm 1. We say thatTe is the ≤TO timestamp of e—for events
f ≤tr f

′
, Tf ⊑ Tf ′ iff f ≤TO f ′. Similarly, the clocks Dt and

Ht respectively correspond to the partial orders ≤DCP and

≤CHB. The value of the clock Pthr(e ) after processing an event

e , denoted Pe , can be used to identify ≺DCP predecessors of

e . That is, for events f and f ′ (with f ≤tr f
′
), f ≺DCP f ′ iff

Df ⊑ Pf ′ . The clocks T
r
t,x and Twt,x store the ≤TO timestamps

Tert,x andTewt,x of the last events e
r
t,x and e

w
t,x that respectively

read and write to x in thread t in the trace seen so far. Sim-

ilarly, the clocks Hr
t,x and Hw

t,x store the ≤CHB timestamps

of the last events of the form ⟨t , r(x )⟩ and ⟨t , w(x )⟩ in the

trace so far. The clocks Pℓ and Hℓ store the ≺DCP and ≤CHB
timestamps of the last release event on lock ℓ.

The FIFO queue Acqt, ℓ maintains pairs ⟨T ,D⟩ of ≤TO and

≤DCP timestamps of some of the acquire events for lock ℓ
and the queue Relt, ℓ stores the ≤CHB timestamps of the cor-

responding release events. These queues ensure that the

corresponding timestamps correctly mimic the ≺DCP order,

so as to incorporate rule (b) of ≺DCP (Definition 2). Accord-

ing to this rule, if we observe a release event e = ⟨t , rel(ℓ)⟩,
then for all earlier release events e ′ ∈ Releasesσ (ℓ) ≰σTO e ,
we must have e ′ ≺σDCP e whenever matchσ (e ′) ≺σDCP e . In
terms of timestamps, this means that ifDmatchσ (e ′) ⊑ Pe , then
both the ≺DCP and ≤DCP timestamps of e need to be updated
to additionally ensure De ′ ⊑ Pe . The queue Acqt, ℓ stores the
necessary information about all earlier ℓ acquire events for
the check “Dmatchσ (e ′) ⊑ Pe ′” above, and the corresponding

release timestamps are stored in Relt, ℓ and can be used to cor-
rectly update ≤DCP and ≺DCP timestamps for e . The choice
of the queue data structure here is motivated by the follow-

ing observation. Once we update Pt to ensure De ′ ⊑ Pe , we

8
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no longer need the information about e ′ because the times-

tamp Pf of each later event f performed by thr(e ) satisfies
De ′ ⊑ Pe ⊑ Pf . Thus, both e ′ and matchσ (e ′) can safely

be discarded from the set of events we wish to track. In

fact, since rule (c) also ensures that for every ℓ-release event
e ′′ ≤σtr e ′, we have Ce ′ ⊑ Pe =⇒ Ce ′′ ⊑ Pe , we can also

discard all release events on lock ℓ whose timestamps were

pushed before that of e ′ in Relt, ℓ .

Updates.After processing an event e = ⟨t ,op⟩, the local com-

ponents of the clocks Dt ,Tt and Ht are incremented after

performing each event (i.e., we assign “Tt := T[Tt (t ) + 1/t]”,
“Dt := D[Dt (t ) + 1/t]”, and “Ht := H[Ht (t ) + 1/t]”), to en-

sure consistency of timestamps. As an example, let e, e ′, f
be events such that e ′ ∈ nextσ (e ) and thr(e ) = thr(e ′),
e ≤σDCP f but e ′ ≰σDCP f , then this clock-increment en-

sures that the timestamps also obey De ⊑ Df but De ′ ̸⊑ Df .

Since these assignments are common to all events, we do

not explicitly include them in Algorithm 1.

At an acquire event e = ⟨t , acq(ℓ)⟩, we update Ht with
the ≤CHB timestamp of the latest release on ℓ (stored in

Hℓ). Similarly, to account for rule (c) of ≺DCP, we update Pt
using the clock Pℓ storing the ≺DCP timestamp of the latest

ℓ-release. The reasoning behind most other updates in the

algorithm follows similarly by analyzing the different rules

of ≺DCP and ≤CHB. The check T
w
t ′,x on line 36 performed at

an event e = ⟨t , r(x )⟩ ensures that we only consider earlier

write events e ′ on x that conflict with e (and thus e ′ ≰σTO e).
Similar reasoning applies to the checks on lines 27, 42 and

46.

Let us now state the key observation about the timestamps

that the algorithm computes.

Theorem 2. Let σ be a trace with e, e ′ ∈ Eventsσ such that
e ≤σtr e

′. LetDe andDe ′ be the ≤σDCP timestamps of respectively
e and e ′ assigned by Algorithm 1. We have, e ≤σDCP e ′ iff
De ⊑ De ′ .

Let us now state the running time and space usage of

Algorithm 1. Let n be the number of events and letT ,L,V be

the number of threads, locks and memory locations in the

trace. The following theorem states the asymptotic time and

space complexity for Algorithm 1, assuming constant time

for arithmetic operations.

Theorem 3. Algorithm 1 uses O (nT 2) time and O (T (L +
TV ) + nT ) space.

4.1 Lower Bounds
Algorithm 1 runs in linear time and uses linear space (The-

orem 3). This is optimal — any linear time algorithm com-

puting ≤DCP must use linear space. The proof of this result

is very similar to the proof that establishes the linear space

lower bound to compute WCP [22]; we therefore skip this

proof.

While the observations in the previous paragraph estab-

lish the optimality of our algorithm as a ≤DCP-based dead-

lock prediction algorithm, it doesn’t say anything about the

hardness of the deadlock prediction problem itself. We now

establish lower bounds for the deadlock prediction problem.

Recall that the deadlock prediction problem, DeadlockPred,
is the following problem: Given a trace σ , determine if σ has

a predictable deadlock. We can prove the following lower

bound for any algorithm for this problem.

Theorem 4. Let A be an algorithm for DeadlockPred run-
ning in time T (n) and using space S (n). Then T (n)S (n) =
Ω(n2).

The proof of Theorem 4 is postponed to Appendix C. An

immediate corollary of Theorem 4 is that the space require-

ments of any linear time algorithm for DeadlockPred is at

least linear.

Corollary 5. IfA is a linear time algorithm forDeadlockPred
using space S (n) then S (n) = Ω(n).

5 Incorporating Control and Data Flow
So far in this article, the notion of correct reordering has been

a bit conservative. In particular, each correct reordering σ ′ of
σ ensured that every read e in σ ′ observes the same value as

in σ (by forcing lwσ (e ) = lwσ ′ (e )). Such a restriction ensured
that the values of all the expressions in the branch statements

(conditionals) executed in the program are preserved and

thus the same control flow is executed in each of the correct

reorderings. However, not every value read may influence

the decision at a branch. It may thus be possible to infer re-

orderings that do not preserve the last writes corresponding

to some of the read events, thereby allowing us to be less

conservative. Thus, if we additionally track branch events

in our traces and additionally identify such read events that

do not affect any of these branch events, we can potentially

identify more deadlocks, in previous unexplored reorderings

that no more restrain the last write before such read events.

In this section, we explore how such fine grained informa-

tion in traces can be exploited for enhancing the power of of

our deadlock prediction algorithm. The following example

provides a good illustration.

Example 11. Consider programs P1 (Figure 8a) and P2 (Fig-
ure 8c). Let us consider the executions of these programs

obtained when the scheduler first schedules thread T1 fol-

lowed by thread T2. If, like before, we do not track any branch
events, both the executions thus obtained are the trace ρ3
shown in Figure 3a. In this case, all correct reorderings of ρ3
are prefixes of ρ3, and thus ρ3 has no predictable deadlock.

However, if we decide to trace branch events, P1 generates
trace ρ10 Figure 8b, and P2 generates ρ3 from Figure 3a; no-

tice that the only difference between their executions is the

presence of the branch event in ρ10. In this case, the read

event e6 in ρ10 affects the branch event e7, and thus the only

9
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public class TestBranch extends Thread {
public static Object L1 = new Object();
public static Object L2 = new Object();
public static int x;
public static void main (String [] args)
throws Exception{
x := 0
new T1().start();
new T2().start();

}
static class T1 extends Thread {
public void run () {
synchronized (L1) {synchronized (L2) {}}
x := 42;

}
}
static class T2 extends Thread {
public void run () {
if(x == 42){

synchronized (L2) {synchronized (L1) {}}
}

}
}

}

t1 t2

1 acq(ℓ)
2 acq(m)
3 rel(m)
4 rel(ℓ)
5 w(x )
6 r(x )
7 branch
8 acq(m)
9 acq(ℓ)
10 rel(ℓ)
11 rel(m)

public class TestNoBranch extends Thread {
public static Object L1 = new Object();
public static Object L2 = new Object();
public static int x;
public static void main (String [] args)
throws Exception{
x := 0
new T1().start();
new T2().start();

}
static class T1 extends Thread {
public void run () {
synchronized (L1) {synchronized (L2) {}}
x := 42;

}
}
static class T2 extends Thread {
public void run () {
System.out.println("x = " + x);
synchronized (L2) {synchronized (L1) {}}

}
}

}

Figure 8. Programs (a) P1 on the left and (c) P2 on the right. In the middle (b) shows a trace ρ10 generated by P1. A trace of

program P2 is shown in Figure 3a. Program P1 does not have a predictable deadlock, while P2 does.

correct reorderings that we can infer are prefixes of ρ10. How-
ever, since there are no branch events in ρ3 (even though we

decided to track all branch events), the value that the read

event e6 reads does not affect the executability of any event

and thus we can infer the trace ρCR
3
= e1e6e7 as a correct

reordering of ρ3 (even though e6 no longer sees the same last

write), and thus we can conclude that ρ3 has a predictable
deadlock (in the case when we decide to track branch events).

Let us now formalize some ideas presented above. The

first step towards this is to formulate a more general notion

of correct reordering that will be parametric on a data flow
predicate DF 2

. For an event e of σ , DFσ (e ) ⊆ Readsσ is

the set of read events that must see the same value in any

correct reordering, for event e to happen. Armed with such

a predicate, correct reordering can be relaxed as follows.

Definition 3 (Correct Reordering with Data Flow). Let σ
be a trace and DFσ be a data flow predicate on the events of

σ . A trace σ ′ is a correct reordering of σ modulo DFσ if

1. Eventsσ ′ ⊆ Eventsσ ,
2. σ ′ respects ≤σTO, and
3. for every e ∈ σ ′ and for every e ′ ∈ DFσ (e ), we must

have that (a) e ′ ∈ σ ′, and (b) lwσ ′ (e
′) = lwσ (e

′).

Observe that the following simple observation about Defi-

nition 3 holds.

Proposition 6. Suppose DF1σ and DF2σ are two data flow
predicates such that for every event e ,DF1σ (e ) ⊆ DF2σ (e ). Then
if σ ′ is a correct reordering of σ with respect to DF2σ then σ ′ is
also a correct reordering of σ with respect to DF1σ .

The definition of correct reordering presented in Section 2,

is equivalent to Definition 3 for a specific conservative in-

terpretation of the data flow predicate. In Java, branches

and writes depend on the values of local registers, which

2
Strictly, speaking this will not be a predicate i.e., boolean valued. Never-

theless, we will call it so.

in turn depend on local reads. Thus, we could conserva-

tively assume that a write or a branch event e , depends
on all read events performed by the same thread before e .
These local reads in turn may depend on the values writ-

ten last (probably by other threads), and this dependency

must be propagated. This leads us to a definition of relevant
reads for an event e , which we denote by RelRdsσ (e ). Before
defining this set, let PriorRdsσ (e ) = { f ∈ Readsσ | f ≤σtr
e and thr( f ) = thr(e )}. Now, RelRdsσ (e ) is the smallest set

such that (a) PriorRdsσ (e ) ⊆ RelRdsσ (e ), and (b) for all

f ∈ RelRdsσ (e ), PriorRdsσ (lwσ ( f )) ⊆ RelRdsσ (e ). Con-
sider the data flow predicate given by DF⊤σ (e ) = RelRdsσ (e )
for all events e . It is easy to see that correct reorderings

with respect to DF⊤σ is the same as the definition of correct

reordering given in Section 2.

We can relax the data flow predicate, and thereby the defi-

nition of correct reordering, while at the same time ensuring

that our predictions are sound. This requires that a trace

additionally have branch events. Thus, a trace may contain

events of the form ⟨t , branch⟩, which indicates that thread t
performed a branch-event. The set of branch events in σ will

be denoted as Branchesσ . The main reason to ensure that

reads see the same value is to ensure that branch events are

evaluated in the same manner. Therefore, we could consider

a data flow predicate that only demands that the relevant

reads of branch events be preserved.

DFbrσ (e ) =



RelRdsσ (e ) if e ∈ Branchesσ
∅ otherwise

Notice that thanks to Proposition 6, we can conclude that if

σ ′ is a correct reordering with respect to DF⊤σ then σ ′ is also
a correct reordering with respect to DFbrσ .

Example 12. Let us reconsider the programs P1 and P2,
the corresponding traces ρ3 and ρ10 and their reorderings

modulo the two data flow predicatesDF⊤ andDFbr. The only
correct reorderings of ρ10 modulo DFbr are prefixes of ρ10.

10
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For ρ3, the only correct reorderings of ρ3 modulo DF⊤ are

prefixes of ρ3. On the other hand, the trace e1e6e7 is also
correct reordering of ρ3 modulo DFbr.

Central to exploiting the new fine grained correct reorder-

ing definition, is to realize that the data flow predicate DFbr

can be used to identify data access events that will not influ-

ence any branch event in σ , and therefore can be ignored.

The set of important data access events include all the reads

that are relevant to any branch-event and all the write events
on variables x that have a relevant read event. The reason

we include all write events, as opposed to just those that

actually influence a branch, is because the positioning of all

these write events is important — we need to ensure that

none of these write events (even those that are never read)

ever interfere between a read-event and its last write event.

Taking RelRdsσ to be ∪e ∈Branchesσ RelRdsσ (e ), the set of all
relevant access events, RelAccσ , is given by

RelAccσ = RelRdsσ ∪
⋃

x ∈ Varsσ
∃e ∈ Readsσ (x ) ∩ RelRdsσ

Writesσ (x ).

Any data access event that that is not relevant is irrelevant.
Thus, IrrAccσ = Accessesσ \ RelAccσ .

We need one more definition before describing how to pre-

dict deadlocks modulo DFbr. For a set of events E ⊆ Eventsσ ,
filter(σ ,E) is the sequence obtained by ignoring the events

in E, i.e., it is a projection of σ on the set Eventsσ \ E. No-
tice, that filter(σ , IrrAccσ ) is a trace (that is, satisfies lock

semantics) because none of the acquires and releases are

dropped.

We now state main result that we will exploit. Its proof

can be found in Appendix D.

Lemma 7. Let σ be a trace, and let ρ be a correct reordering
of filter(σ , IrrAccσ ) with respect to DF⊤. Then there is a trace
τ such that ρ = filter(τ , IrrAccσ ) and τ is a correct reordering
of σ with respect to DFbr.

Lemma 7 suggests the following approach. To predict dead-

locks in σ for correct reorderings with respect to DFbr, com-

pute IrrAccσ , filter the trace to obtain trace π , and analyze π
usingAlgorithm 1 in Section 4. If π has a predictable deadlock

then Lemma 7 guarantees that so does σ . The main challenge

remaining is then to figure out how to compute IrrAccσ . We

show that there a single pass, linear time, vector clock based

algorithm that can “compute” the set IrrAccσ . This algorithm
does not explicitly compute the set of all events in IrrAccσ
(which would be huge and linear in σ ). Instead it computes a

vector clock and a set of program variables. Using the vector

clock and set of variables, a second pass can determine if

e ∈ IrrAccσ , and if not, the algorithm will process it as Al-

gorithm 1. Thus, we have a two-pass, linear time algorithm

for predicting deadlocks with respect to DFbr. Details of this
algorithm are presented in Appendix D.

6 Experimental Evaluation
Here, we discuss the evaluation of our approach on real-

world benchmarks, with traces of length as high as 1.45
billion events. A summary of our results is presented in

Table 1. Additional details about our evaluation can be found

in Appendix E.

Implementation. We have implemented the deadlock pre-

diction algorithm based on the ≤DCP partial order in our

tool DeadTrack , written in Java. DeadTrack implements

the vector clock algorithm described in Section 4. We also

incorporate control flow information observed in the trace

as described in Section 5 for enhancing ≤DCP based predic-

tion. DeadTrack also implements a Goodlock style lock

graph algorithm to identify 2 thread deadlock patterns. We

compare against the only existing sound dynamic deadlock

prediction tool Dirk [20], and in order to compare against the

same trace, we analyze traces generated using Dirk’s logging

library. A direct comparison against DeadlockFuzzer [19]

was not possible as the tool uses deprecated libraries and

Java functionality which resulted in it only being able to

run on a handful of the benchmarks. Further, the Sherlock

tool [12] is not available in the public domain, and could not

be compared against.

Benchmarks and Setup.We evaluated our approach on a

set of comprehensive benchmarks, also used in priorwork [20].

The names of these benchmarks are listed in Column 1 of

Table 1. The benchmarks ArrayList and HashMap have been

derived from [19]. Avrora, Batik, Tomcat, Eclipse, Jython,

Luindex, Lusearch, FOP, PMD and Xalan are derived from

the Dacapo benchmark suite [4]. Transfer, Bensalem [3] and

Picklock [31] is an illustrative example from [20]. Deadlock

and Dining Phil, are derived from the SIR repository and the

benchmarks Dbcp1, Dbcp2, Derby2 and Log4J2 are derived

from the JaConTeBe suite [26]. The examples LongDead-

lock, TrueDeadlock and FalseDeadlock have been custom

designed by us (see Appendix E). Our experiments were

conducted on a machine with 64 GB of heap space and an

8-core 46-bit Intel Xeon(R) processor @ 2.6GHz. In Columns

3, 5, 7 and 11 of Table ??, we report the number of different

pairs of program locations (p,p ′) corresponding to which

there are event pairs f , f ′ participating in a deadlock pattern
(or a readl deadlock for the case of Dirk, DCP and DCPDF)

⟨e, f , e ′, f ′⟩.

6.1 Results
Let us now discuss some observations from our evaluation

(summarized in Table 1).

PredictionCapability.Note that the SMT solving approach

employed in Dirk [20] is maximal—any predictable deadlock

will be, in theory, reported. On the other hand, prediction

using Theorem 1 not guaranteed to report all deadlocks.
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Table 1. Deadlock findings for each benchmark program. Column 1 and 2 describe the benchmark name and the size of the

traces generates. Columns 3, 5, 7 and 11 report the number of deadlocks as reported by Goodlock, Dirk, DCP and DCPDF (DCP

with data and control flow information). Columns 4, 6, 8 and 12 report the time (in seconds) taken by Goodlock, Dirk, DCP and

DCPDF for analyzing the entire trace. Columns 9 and 13 report the speedup of DeadTrack over Dirk. Columns 10 and 14

report the size of the FIFO queues Acqt, ℓ and Relt, ℓ used in the vector clock algorithms for DCP and DCPDF, as a fraction of

the total size of the trace. We run Dirk with the parameters --chunk-size 100000 --chunk-offset 5000 --solve-time
60000 (window size 100K and solver timeout 60 seconds).

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Goodlock Dirk DCP DCPDF

Benchmark #Events D.locks Time (s) D.locks Time (s) D.locks Time (s) Speed-up |Queue| D.locks Time (s) Speed-up |Queue|

Deadlock 37 1 0.03 1 0.48 0 0.03 15.0× 10.81% 1 0.03 14.55× 10.81%

TrueDeadlock 38 1 0.29 0 0.1 1 0.03 3.45× 10.53% 1 0.26 0.39× 10.53%

PickLock 50 1 0.03 1 0.16 1 0.03 5.0× 12.0% 1 0.04 4.32× 12.0%

Dining 58 1 0.03 1 0.62 1 0.03 20.0× 6.9% 1 0.04 17.71× 6.9%

Bensalem 59 1 0.03 1 0.66 1 0.03 20.0× 16.95% 1 0.24 2.74× 16.95%

Transfer 62 1 0.03 1 0.18 0 0.03 5.45× 6.45% 1 0.04 4.0× 6.45%

FalseDeadlock 651 0 0.06 1 9.57 0 0.07 145.0× 0.92% 0 0.08 121.14× 0.92%

DBCP1 1.78K 1 0.08 1 0.77 1 0.07 11.67× 0.56% 1 0.09 8.46× 0.56%

Derby2 1.93K 1 0.25 1 0.57 1 0.17 3.33× 0.16% 1 0.09 6.63× 0.16%

Log4j2 2.23K 1 0.09 1 1.44 1 0.09 16.18× 0.49% 1 0.11 12.97× 0.49%

DBCP2 2.67K 1 0.12 1 0.8 1 0.09 8.6× 0.52% 1 0.12 6.96× 0.52%

LongDeadlock 6.03K 1 0.1 0 15.98h 1 0.15 386046.98× 0.07% 1 0.2 283354.68× 0.07%

HashMap 45.52K 3 0.31 2 58.12m 3 8.32 418.95× 0.04% 3 8.22 424.1× 0.04%

ArrayList 45.87K 3 0.32 3 54.49m 3 10.54 310.08× 0.03% 3 17.3 188.92× 0.03%

lusearch-fix 304.02M 0 11.86m 0 1.19h 0 11.56m 6.16× 0.0% 0 23.06m 3.09× 0.0%

pmd 6.6M 0 14.07 0 1.56m 0 14.72 6.35× 0.0% 0 24.84 3.76× 0.0%

fop 24.48M 0 46.68 0 5.82m 0 50.01 6.98× 0.0% 0 1.33m 4.37× 0.0%

luindex 26.74M 0 57.83 0 6.3m 0 59.64 6.34× 0.0% 0 1.85m 3.41× 0.0%

tomcat 30.64M 0 1.21m 0 7.27m 0 1.28m 5.66× 0.0% 0 3.15m 2.31× 0.0%

batik 63.63M 0 2.4m 0 14.96m 0 2.4m 6.24× 0.0% 0 4.24m 3.53× 0.0%

eclipse 104.75M 6 4.82m 0 24.91m 0 26.34m 0.95× 0.1% 0 13.84m 1.8× 0.1%

xalan 203.76M 0 8.2m 0 48.99m 0 10.31m 4.75× 0.01% 0 19.22m 2.55× 0.01%

jython 242.99M 0 6.53m 0 59.64m 0 6.6m 9.03× 0.0% 0 11.64m 5.12× 0.0%

avrora 1.45B 0 46.35m 0 5.71h 0 1.0h 5.71× 0.05% 0 1.64h 3.48× 0.05%

However, on the set of benchmarks (derived from [20]), one

can see that ≤DCP based deadlock prediction is indeed pow-

erful and all deadlocks reported by Dirk are also reported by

the DCP and DCPDF engines in DeadTrack , andmost of the

times match the upper bound given by Goodlock (Column

3). The additional deadlock in Transfer missed by DCP, but

identified by DCPDF was manually inspected to be schedula-

ble due to reasoning that involves control flow information

(see Section 5). The benchmark TrueDeadlock (see Appen-

dix E) has a predictable deadlock, with a deadlock pattern

that manifests due to fork and join dependencies. Dirk misses

this deadlock pattern and thus the deadlock. Appendix E also

discusses how prediction power of Dirk can be affected due

to windowing using a parametric version of LongDeadlock.

Soundness. We manually inspected the deadlocks pointed

out by DeadTrack ’s vector clock implementation based

in ≤DCP to experimentally verify its soundness guarantee

(Theorem 1). Most deadlocks reported by DeadTrack are

also reported by Dirk, which relies on SMT solving for con-

firming deadlock patterns. The extra deadlock in HashMap

was manually verified to be correct. The real predictable

deadlock in LongDeadlock (see Appendix E) is missed by

Dirk because the solver in Dirk times out when analyzing

the trace of length about 6000. We found that the benchmark

FalseDeadlock (see Appendix E), in fact, does not have a

deadlock pattern, because of a common lock protecting the

pattern. Dirk, nevertheless, reports this as a deadlock, vio-

lating the soundness guarantee of the underlying approach.

Further, the soundness guarantee of ≤DCP applies to traces

that obey well-nesting (see Section 2), while the benchmarks

eclipse and avrora do not satisfy this guarantee. However,

≤DCP does not report any deadlock on these benchmarks

and is thus vacuously sound.

Scalability. Our linear time vector clock algorithm is al-

ways faster than Dirk, by a good margin (mean speedup of

> 16, 000 and median speed-up of 6.6). Dirk uses an SMT

solver as a back-end engine and in order to scale to large

traces, Dirk resorts to windowing, i.e., splitting the trace into

smaller chunks. On the other hand, our approach does not

depend upon windowing. Further, Dirk first identifies dead-

lock patterns and then in a separate phase checks feasibility

constraints for each of the pattern found. It does not report

any deadlock patterns in the larger DaCaPo benchmarks.

Unlike Dirk, we do not have a pass where we first search for

deadlock patterns. This explains the odd-one-out example

eclipse where DeadTrack is a bit slower. The DCPDF engine

12



Sound Dynamic Deadlock Prediction in Linear Time PLDI’19, June 22–28, 2019, Phoenix, AZ, USA

however performs much better in eclipse because a lot of

events can be identified as irrelevant accesses (Section 5).

Finally, the theoretical linear space bound for ≤DCP deadlock

detection is not a bottleneck and the FIFO data structures

used do not grow prohibitively large on the examples with

large traces.

7 Conclusions
We present a linear time, partial-order based technique for

sound deadlock prediction that has promising performance

on benchmark examples. There are several avenues for future

work. We currently only characterize predictable deadlocks

of size 2, and extending the DCP partial order for detecting

many-thread deadlocks is a promising direction. Another

interesting direction is to enhance prediction power by iden-

tifying weaker partial orders than DCP. Our algorithm can

benefit from an inexpensive unsound, yet maximal, analysis

to filter out infeasible deadlock patterns.
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A Proof of Theorem 1
We first recall the ≤WCP partial order from [21].

Definition 4 (Happens Before). For a trace σ , ≤σHB is the

smallest partial order on Eventsσ such that

(a) for any two events e1 ≤
σ
tr e2, if e1 <

σ
TO e2, then e1 ≤

σ
HB

e2, and
(b) for any two events e1 ≤

σ
tr e2, if e1 ∈ Releasesσ (ℓ) and

e2 ∈ Acquiresσ (ℓ) for some lock ℓ ∈ Locksσ , then
e1 ≤

σ
HB e2.

Definition 5 (Weak Causally Precedes). For a trace σ , ≺σWCP
is the smallest relation such that the following hold.

(a) Let C1 and C2 be two critical sections on some lock

ℓ ∈ Locksσ such that rel(C1) ≤
σ
tr acq(C2) and there

are events e1 ∈ C1 and e2 ∈ C2 such that e1 ≍ e2. Then,
rel(C1) ≺

σ
WCP e2.

(b) LetC1 andC2 be two critical sections on some lock ℓ ∈
Locksσ such that rel(C1) ≤

σ
tr acq(C2) and rel(C1) ≰

σ
TO

acq(C2). Further, let e1 ∈ C1 and e2 ∈ C2 be events such

that e1 ≺
σ
WCP e2. Then, rel(C1) ≺

σ
WCP rel(C2).

(c) ≺σWCP is closed under left and right composition with

≤σHB. That is,≺
σ
WCP ◦ ≤

σ
HB⊆≺

σ
WCP and ≤

σ
HB ◦ ≺

σ
WCP⊆≺

σ
WCP.

Finally, ≤σWCP=≺
σ
WCP ∪ <

σ
TO.

An ordered pair of events (e1, e2) ∈≤
σ
tr is a WCP-race if

e1 ≍ e2 and e1 ≰
σ
WCP e2. Further, (e1, e2) is the first WCP-race

if for all WCP-races (e ′
1
, e ′

2
) in σ , e2 ≤

σ
tr e
′
2
and if e2 = e ′

2
then

e ′
1
≤σtr e1.
Let us now recall the soundness guarantee ofWCP from [21].

Theorem 8 (WCP soundness). WCP is weakly sound, i.e.,
given any trace σ , if σ exhibits a WCP-race then σ exhibits
a predictable deadlock, or there is a correct reordering σ ′ of
σ such that σ ′ = σ ′′e1e2 or σ ′ = σ ′′e2e1, where (e1, e2) is the
first WCP race in σ .

Remark 1. The rule (a) presented above in Definition 5 is a

slightly weaker than in [21]. Further, the presentation in [21]

does not consider fork and join events. The proof of sound-
ness for WCP, nevertheless, holds for these cases as well.

A.1 Transforming the trace.
The proof of soundness of DCP relies on the soundness guar-

antee for WCP. In particular, we proceed as follows. Given a

trace σ with a deadlock pattern ⟨e, f , e ′, f ′⟩ with f | |σDCP f
′
,

we produce another trace wrap(σ ) by essentially enclosing

all the access events in σ using fresh locks. The transformed

trace wrap(σ ) then orders all conflicting events in the origi-

nal trace σ , and thus wrap(σ ) cannot have a predictable data
race. Further, the two concurrent acquire events f and f ′

are unordered by WCP in wrap(σ ). Let us give the details of
this transformation below.

Let σ be a trace. We will assume that Threadsσ is an or-

dered set indexed from 1 tom and every event in σ is asso-

ciated with a unique identifier. For {t1, . . . , tk } ⊆ Threadsσ ,

x ∈ Varsσ and e ∈ Eventsσ , let us denote, by wrapt1, ...,tk (e,x ),
the sequence

⟨t1, acq(ℓt1,x )⟩, · · · , ⟨tk , acq(ℓtk ,x )⟩ · e ⟨tk , rel(ℓtk ,x )⟩,

. . . , ⟨t1, rel(ℓt1,x )⟩.

We will refer to the newly introduced locks of the form ℓti ,x
as fake locks.

Definition 6. For an event e = ⟨t ,o⟩ in trace σ and x ∈
Varsσ , let wrap(e ) be a homomorphism defined as follows.

wrap(e ) =




e if e < Readsσ (x ) ∪Writesσ (x )
wrapt (e,x ) if e ∈ Readsσ (x )
wrapt1, ...,tm (e,x ) if e ∈ Writesσ (x )

We can naturally lift wrap to a trace σ by replacing every

event e in σ by wrap(e ). We will assume that every event in

a trace has an associated unique identifier. For every event

e ′ in wrapt1, ...,tk (e,x ), we let src(e
′) = e .

For a traceσ and a set of eventsE ⊆ Eventsσ , let clearE (σ )
be the trace that results from removing every element in E
from σ .

Let us first present a small technical lemma that relates cor-

rect reorderings of a trace σ and the corresponding wrapped

trace wrap(σ )

Lemma9. Letσ be a trace andα = wrap(σ ). Let fakeEvents =
{e ∈ Acquiresα (ℓti ,x ) ∪ Releasesα (ℓt,x ) | t ∈ Threadsσ ,x ∈
Varsσ }. Letα ′ be a correct reordering ofα . Then, clearfakeEvents (α ′)
is a correct reordering of σ .

Proof. Let σ ′ = clearfakeEvents (α
′).

First, let us argue that σ ′ is a valid trace, that is, σ ′ does
not violate lock semantics. This is because α ′ is a valid trace

and does not violate lock semantics (for a superset of locks).

Let us now argue that for every thread t ∈ Threadsσ ′ , σ ′ |t
is a prefix of σ |t . This is because α

′ |t is a prefix of α |t (as α
′

is a correct reordering of α ) and fakeEvents ∩ Eventsσ = ∅.
Next, we argue that all reads in σ ′ read the same last write

as in σ . This is because (i) there are no read or write events

in fakeEvents and (ii) all reads in α ′ read the same last write

in α (as α ′ is a correct reordering of α ). □

We next establish the relationship between different par-

tial orders on the two tracesσ and its transformation wrap(σ ).

Lemma 10. Let σ be a trace and e1, e2 ∈ Eventswrap(σ ) . If
e1 ≤

wrap(σ )
HB e2 then src(e1) ≤

σ
CHB src(e2).

Proof. Let e1, e2 ∈ Eventswrap(σ ) such that e1 ≤
wrap(σ )
HB e2.

Then, there is a path

e1 = f0 ≤
wrap(σ )
HB f1 ≤

wrap(σ )
HB f2 · · · ≤

wrap(σ )
HB fn = e2

such that for every 0 ≤ i ≤ n − 1, either fi <
wrap(σ )
TO fi+1 or

fi = ⟨ti , rel(ℓ)⟩ and fi+1 = ⟨tj , acq(ℓ)⟩. In the first case, we

have src( fi ) <
σ
TO src( fi+1) and thus src( fi ) ≤

σ
CHB src( fi+1).

In the latter case, if ℓ is not a fake lock, then src( fi ) = fi and
15
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src( fi+1) = fi+1 and thus src( fi ) ≤
σ
CHB src( fi+1). Other-

wise, we have that src( fi ) ≍ src( fi+1) and thus src( fi ) ≤
σ
CHB

src( fi+1). Then, from the transitivity of ≤CHB, it follows that

src(e1) ≤
σ
CHB src(e2). □

Lemma 11. Let σ be a trace and e1, e2 ∈ Eventswrap(σ ) . If
e1 ≤

wrap(σ )
WCP e2 then src(e1) ≤

σ
DCP src(e2).

Proof. If e1 <
wrap(σ )
TO e2, then clearly, src(e1) <

σ
TO src(e2)

and thus src(e1) ≤
σ
DCP src(e2). Otherwise, we have e1 ≺

wrap(σ )
WCP

e2. We will induct on the rank of ≤
wrap(σ )
WCP edges.

• Case e1 ∈ Releaseswrap(σ ) (ℓ), and there is an e ′
1
∈

CS (e1) such that e ′
1
≍ e2 and e2 ∈ CS (ℓ).

If e1 is a fake lock, then src(e1) = e ′
1
≍ e2 = src(e2)

and thus src(e1) ≤
σ
DCP src(e2). Otherwise, src(e1) =

e1 ∈ Releasesσ (ℓ), and, in the trace σ , we have e ′
1
∈

CS (e1) and e2 ∈ CS (ℓ), and thus e1 ≤
σ
DCP e2 by rule (b)

of ≤DCP.

• Case e1, e2 ∈ Releasesσ (ℓ) and there are events e ′1, e
′
2
∈

Eventswrap(σ ) such that e ′
1
∈ CS (e1), e ′2 ∈ CS (e2) and

the WCP edge (e ′
1
, e ′

2
) ∈≤wrap(σ )WCP has a lower rank.

Our inductive hypothesis ensures that src(e ′
1
) ≤σDCP

src(e ′
2
). Now, if ℓ is a fake lock, then src(e1) = src(e ′

1
)

and src(e2) = src(e ′
2
) and thus we have src(e1) ≤

σ
DCP

src(e2). Otherwise, in trace σ , we have src(e ′
1
) ∈

CS (e1) and src(e
′
2
) ∈ CS (e2). Thus, by rule (c) of ≤DCP,

we have src(e1) ≤
σ
DCP src(e2).

• Case HB-composition
– There is an event e3 ∈ Eventswrap(σ ) such that
e1 ≤

wrap(σ )
HB e3 and the WCP edge e3 ≤

wrap(σ )
WCP e2

has a lower rank.
By Lemma 10, we have src(e1) ≤

σ
CHB src(e3). Also,

by induction hypothesis, we have src(e3) ≤
σ
DCP src(e2).

Thus, we have src(e1) ≤
σ
DCP src(e2) by ≤

σ
CHB com-

position.

– There is an event e3 ∈ Eventswrap(σ ) such that
e1 ≤

wrap(σ )
HB e3 and the WCP edge e3 ≤

wrap(σ )
WCP e2

has a lower rank.
Similar to the previous case.

□

A.2 Adding a fake race in wrap(σ )

In the trace wrap(σ ), there are no races. This is because, all

conflicting events are enclosed within critical sections of

some common lock. We will be using the soundness the-

orem of WCP to infer the presence of deadlocks. For this,

we will introduce additional write events right before the

two acquire events (in wrap(σ )) that describe the deadlock.
We will then show that because the two acquire events are

unordered by DCP and the threads executing them do not

hold a common lock while executing them, then the two

write events introduced in wrap(σ ) are in WCP race.

So let us first define some useful notation here.

Definition 7. Let σ be a trace and let e1, e2 ∈ Eventsσ . Let
d be a fresh variable (that is, d has no access event in σ ). The
trace addFresh(σ , e1, e2,d ) is constructed by adding events

e ′
1
= ⟨t1, w(d )⟩ and e

′
2
= ⟨t2, w(d )⟩ just before e1 and e2 respec-

tively, where ti = thr(ei ), i ∈ {1, 2}. More formally,

addFresh(σ , e1,
e2,d )

=




ε if σ = ε

addFresh(σ ′, e1, e2,d )
·⟨ti , w(d )⟩ · ei

if

σ = σ ′ · ei ,

i ∈ {1, 2}

addFresh(σ ′, e1, e2,d ) · e if

σ = σ ′ · e,

e < {e1, e2}

Claim 12. Let σ be a trace and let e1, e2 ∈ Eventsσ such
that locksHeldσ (e1) ∩ locksHeldσ (e2) = ∅. Let d be a fresh
variable for σ , let ρ = addFresh(σ , e1, e2,d ) be defined as
above, and let e ′

1
, e ′

2
be the w(d ) events newly introduced. Let

f1, f2 ∈ Eventsρ \ {e ′1, e
′
2
}, be two distinct events trace ordered

between e ′
1
and e ′

2
(exclusive). We have,

1. If f1 ≤
ρ
HB f2, then f1 ≤

σ
HB f2

2. If f1 ≺
ρ
WCP f2, then f1 ≺

σ
WCP f2

Proof. Let f1, f2 be the two events as described above.

1. Let f1 ≤
ρ
HB f2. Then there is an HB path, consisting of

<
ρ
TO and rel-acq edges, going strictly down the trace

order. Each of these edges is also present in σ and thus

f1 ≤
σ
HB f2.

2. Let f1 ≺
ρ
WCP f2. We can induct on the rank of this edge

• Case rule-a edge. Then f1 is a rel(ℓ) event and
there is an event f ′

1
such that f ′

1
≍ f2. Then, clearly

f ′
1
∈ Eventsσ and thus we have f1 ≺

σ
WCP f2.

• Case rule-b edge. Then, f1 and f2 are both rel(ℓ)
events (for some ℓ) and there are events f ′

1
∈ CS ( f1)

and f ′
2
∈ CS ( f2). Neither of f

′
1
and f ′

2
are one of e ′

1

or e ′
2
because locksHeldρ (e ′1) = locksHeldσ (e1) and

locksHeldρ (e ′2) = locksHeldσ (e2) and thus we have

locksHeldσ (e ′1)∩ locksHeldσ (e
′
2
) = ∅. Thus, we also

have f1 ≺
σ
WCP f2

• Case rule-c edge. Then, we consider two cases

– there is an f3 < { f1, f2} such that either f1 ≤
ρ
HB

f3 ≺
ρ
WCP f2. Clearly, f1 ≤

ρ
tr f3 ≤

ρ
tr f2 and is thus

also present in the trace σ . By induction, we have

f3 ≺
σ
WCP f2. Also, we saw above that f1 ≤

σ
HB f3.

This gives us the desired result.

– there is an f3 < { f1, f2} such that either f1 ≺
ρ
WCP

f3 ≤
ρ
HB f2. This case is similar to the previous one

and thus skipped.

□

Lemma 13. Let σ be a trace and let e1, e2 ∈ Eventsσ be events
such that e1 | |σWCP e2 and locksHeldσ (e1) ∩ locksHeldσ (e2) =
∅. Then, e ′

1
| |
ρ
WCP e

′
2
, where d is a fresh variable for σ , ρ =

addFresh(σ , e1, e2,d ) and the events e ′1 = ⟨t1, w(d )⟩, e
′
2
= ⟨t2, w(d )⟩ ∈

Eventsρ are the newly added write events.
16
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Proof. Without loss of generality, assume e1 ≤
σ
tr e2 and thus

e ′
1
≤
ρ
tr e
′
2
. Let us on the contrary assume that e ′

1
≤
ρ
WCP e

′
2
.

If e ′
1
<
ρ
TO e ′

2
, then e1 <

σ
TO e2, which contradicts e1 | |

σ
WCP e2.

Otherwise, e ′
1
≺
ρ
WCP e

′
2
. Thus, there is a path

e ′
1
= f0, f1, . . . fn = e ′

2

such that (i) for every 0 ≤ i < n, we have either fi ≤
ρ
HB fi+1

or fi ≺
ρ
WCP fi+1 is a rule-(a) or rule-(b) WCP edge, and (ii)

there is a 0 ≤ j < n such that fj ≺
ρ
WCP fj+1. Consider the first

edge ( f0, f1). This cannot be a rule-(a) or rule-(b) WCP edge.

This is because every such edge originates from a rel(·)
event but e ′

1
is a w(d ) event. Thus, e ′

1
≤
ρ
HB f1.

Now consider the HB path

e ′
1
= д0 ≤

ρ
HB д1 · · · ≤

ρ
HB дk = f1

where for each 0 ≤ i ≤ k , we have either fi <
ρ
TO fi+1 or

fi , fi+1 are rel(ℓ)-acq(ℓ) events for some lock ℓ. In partic-

ular, the first edge (д0,д1) can only be a thread-order edge

because e ′
1
is a write event. In this case, we clearly have

e1 <
ρ
TO д1 because e1 is the event right after e ′

1
in thr(e ′

1
).

And thus, we have e1 ≤
ρ
HB f1 and thus e1 ≺

ρ
WCP e

′
2
.

Also, notice that the edge ( fn−1, fn ) cannot be a WCP rule

(b) edge because its target is not a release event. Also, it

cannot be a rule (a) edge because the only event that con-

flicts with fn = e ′
2
is e ′

1
but we have that locksHeldρ (e ′1) ∩

locksHeldρ (e ′2) = locksHeldρ (e1) ∩ locksHeldρ (e2) = ∅.
Thus, ( fn−1, fn ) is an ≤

ρ
HB edge.

So we have, e1 ≺
ρ
WCP fn−1 and thus, e1 ≺

σ
WCP fn−1 because

of Claim 12.

This clearly gives e1 ≺
σ
WCP e2 which is a contradiction. □

Corollary 14. Let σ be a trace and let e1, e2 ∈ Eventsσ
be events such that locksHeldσ (e1) ∩ locksHeldσ (e2) = ∅.
Let d be a fresh variable for σ , and let us denote by ρ =
addFresh(σ , e1, e2,d ) the trace obtained by adding events e ′1 =
⟨thr(e1), w(d )⟩ and e ′2 = ⟨thr(e2), w(d )⟩ right above e1 and e2
respectively. If e1 | |σWCP e2 then (e ′

1
, e ′

2
) is a WCP race in ρ.

We are now ready to prove the main theorem.

Theorem 15. Let σ be a trace and e1 = ⟨t , acq(ℓ1)⟩, e2 =
⟨t ′, acq(ℓ2)⟩ ∈ Eventsσ such that ℓ1 , ℓ2. If ℓ2 ∈ locksHeldσ (e1),
ℓ1 ∈ locksHeldσ (e2), locksHeldσ (e1) ∩ locksHeldσ (e2) = ∅
and e1 | |σDCP e2, then σ has a predictable deadlock.

Proof. Using Lemma 11, we have that e1 = src(e1) | |
σ ′
WCP src(e2) =

e2. Let d be a fresh variable for wrap(σ ) (and thus fresh

for σ also), and let ρ = addFresh(wrap(σ ), e1, e2,d ) be the
trace obtained by adding events e ′

1
= ⟨thr(e1), w(d )⟩ and

e ′
2
= ⟨thr(e2), w(d )⟩ right above events e1 and e2 respectively

in the trace wrap(σ ).
From Corollary 14, we have that (e ′

1
, e ′

2
) is a WCP race in ρ.

Also, for every other conflicting pair of events ( f1, f2) ∈≤
ρ
tr,

both f1 and f2 are protected by a common lock, and thus,

f1 ≤
ρ
WCP f2. Hence, (e

′
1
, e ′

2
) is the first (in fact, the only) WCP

race for the trace ρ.

Then, by the soundness theorem of WCP (Theorem 8), we

have one of the two cases :

1. there is a correct reordering ρ ′ of ρ that has a deadlock

2. there is a correct reordering ρ ′ of ρ of the form ρ ′′e ′
1
e ′
2

or ρ ′′e ′
2
e ′
1
.

In both the above cases, we will show that the original

trace σ has a predictive deadlock.

1. Case Predictive deadlock.
Here we have a correct reordering ρ ′ of ρ that exhibits

a deadlock. First note that ρ ′′ = clear{e ′
1
,e ′

2
} (ρ
′) is

a correct reordering of ρ ′ and thus of ρ. Therefore,
by Lemma 9, the trace σ ′ = clearfakeEvents (ρ

′′) is a
correct reordering of σ , where fakeEvents = {e ∈
Acquiresρ′′ (ℓti ,x )∪Releasesρ′′ (ℓt,x ) | t ∈ Threadsσ ,x ∈
Varsσ }.
Let us argue that σ ′ has a deadlock. Let the witness
to the deadlock in ρ ′ be events f1, f2 . . . fk such that

fi = ⟨ti , acq(ℓi )⟩ with
∧

1≤i,j≤k
ti , tj and

∧
1≤i,j≤k

ℓi ,

ℓj match(ei ) < ρ ′ and nextρ′ (ti ) = ⟨ti , acq(ℓ(i+1)%k )⟩
for all 1 ≤ i ≤ k .
First, see that fi ∈ ρ

′′
because the dropped events e ′

1

and e ′
2
are write events. Also, fi < fakeEvents as the

fake locks cannot be in a deadlock because they are

always the innermost locks and the order of acquisi-

tion b/w two fake locks never gets inverted. Thus, fi ∈
Eventsσ ′ for every 1 ≤ i ≤ k . Also, match( fi ) < σ

′
be-

causematch( fi ) < ρ
′
. Finally, nextσ ′ (ti ) = nextρ′′ (ti ) =

⟨ti , acq(ℓ(i+1)%k )⟩. Thus, σ
′
exhibits the same deadlock.

2. Case Predictive race.
In this case, there is a correct reordering ρ ′ = ρ ′′e ′ie

′
j

(i, j ∈ {1, 2}, i , j) of ρ. In particular, ρ ′′ is also a

correct reordering of ρ. Let σ ′ = clearfakeEvents (ρ
′′).

By Lemma 9, is a correct reordering of σ
Now, let li denote the last event in ti thr(ei ), where
i ∈ {1, 2}. The next t1 event after l1 in trace σ is e1.
Similarly, the next t2 event after l2 in trace σ is e2.
Hence, li is also the next ti event in σ ′. Also, ℓ2 ∈
locksHeldσ ′ (l1) and ℓ1 ∈ locksHeldσ ′ (l2).
Thus, σ ′ exhibits a deadlock.

□

B Additional Discussion about the Vector
Clock Algorithm

In this section, we give more details about the algorithm.

Vector clocks and timestamps. We briefly recall vector

times, clocks and associated notations following the vo-

cabulary in [21, 30]. A vector time or timestamp is a map

V : Threadsσ → N mapping each thread of a trace σ to

a non-negative integer. For a vector time V , V [n/t] = λu ·
if u = t then n else V (t ). We denote ⊥ = λt · 0. For two
vector times V1 and V2, V1 ⊔V2 = λt ·max(V1 (t ),V2 (t )), and

17
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V1 ⊑ V2 ≡ ∀t ,V1 (t ) ≤ V2 (t ). A vector clock is a place holder

for vector times, or, in other words, a variable that takes

on values from the space of vector times. All operations on

vector times can, thus, directly be lifted to vector clocks.

Differences from WCP algorithm. Let us point out the
differences in the vector clock algorithm for recognizing

the WCP [21] partial order and our partial order ≤DCP. First,

the WCP algorithm maintains, for every pair (ℓ,x ) of lock
ℓ and memory location x , vector clocks of the form Lr

ℓ,x
and Lw

ℓ,x . These are used for the rule (a) of WCP that orders

critical sections when they contain conflicting events. For

≤DCP, this rule is encompassed by rule (b) in Definition 2,

and thus, there is no need to maintain these additional vector

clocks. Another important difference arises due to the fact

that ≤DCP is closed under composition with ≤CHB, unlike

WCP which is closed under composition with HB (happens-

before). ≤CHB, in addition to ordering HB-ordered events,

also orders conflicting events. Algorithm 1, hence, uses ad-

ditional clocks Hr
t,x and Hw

t,x to correctly maintain ≤CHB,

≺DCP and ≤DCP. Next, the presentation in [21] (and also in

earlier partial orders like CP [30]) does not include fork and

join events, as against our presentation. Finally, rule (b) in

WCP [21] orders releases even if they belong to the same

thread, unlike the rule (b) ≺DCP. To maintain this distinction,

our FIFO queues Acqt, ℓ also enqueue the ≤TO timestamp Tt
(line 21). This distinction also shows up in the comparison

(line 24) at a release event—in order to check if events e and
e ′ are ordered by the irreflexive version of WCP (≺WCP) , one

only needs to check if their WCP (≤WCP) timestampsCe and

Ce ′ satisfy Ce ⊑ Ce ′ . On the other hand, for ≺DCP ordered,

one needs to careful—e ≺DCP e
′
iff Ce ⊑ Pe ′ .

Optimizations. We incorporate several optimizations over

the basic vector clock algorithm. The optimized algorithm

is shown in Algorithm 2. First, let us observe the relation-

ship De = Te ⊔ Pe for every event e . This means that the

vector clock Dt need not be maintained explicitly, and can

be generated from the clocks Tt and Pt . Second, we incor-
porate Djit

+
style optimization—it is enough to increment

the local clocks Tt (t ) and Ht (t ) after a release, read, write or
fork event and the increments performed after an acquire or

a join event are unnecessary and can be skipped. Next, we

observe that it is enough to keep track of pairs ⟨te ,Tte (te )⟩ at
an acquire event e = ⟨te , acq(ℓe )⟩ instead of full vector times

⟨Tte ,Dte ⟩ in the FIFO data structure Acqt, ℓ . This is because
the checks on line 24 and 27 in Algorithm 1 are equivalent

to checking if “D ′(t ′) > Pt (t
′)” and T ′(t ′) > Tt (t

′), where
t ′ is the thread of the acquire event for which Algorithm 1

enqueued the pair ⟨T ′,D ′⟩ of vector times. We similarly also

observe that instead of maintaining separate vector clocks

Tat,x for each pair of thread and variable, it is sufficient to

maintain the threads that performed the last read or write

on x . We store the thread that last wrote to x (LWTx ) and

also the set of threads that read from x since the last write to

x (rThreadsx ). This simplifies the checks on line 36, 42 and

45 in Algorithm 1.

Detecting unordered deadlock patterns. Recall that The-
orem 1 requires us to identify a deadlock pattern ⟨e, f , e ′, f ′⟩
of size 2 with f | |DCP f

′
. To find such patterns, for every lock

ℓ, we keep track of a setHistory(ℓ) of pairs ⟨locksHeldσ (e ),De ⟩,

where e ∈ Acquiresσ (ℓ). This construction is similar to tra-

ditional Goodlock style lock graph construction, but also

keeps track of fork and join dependencies—when a thread t
forks a thread u, every event eu of u also keeps track of all

the set of locks held by t at the time of the fork. Finally, at an

acquire event f = ⟨tf , acq(ℓf )⟩, we check if there is a lock

ℓ ∈ locksHeldσ ( f )\{ℓf } and a tuple ⟨L,D⟩ ∈ History(ℓ) such
that ℓf ∈ L, D ̸⊑ Df , and L \ {ℓ} ∩ locksHeldσ (ℓf ) \ {ℓf } = ∅.
If so, we declare that the trace has a deadlock.

C Proof of Theorem 4
Before proving Theorem 4 we will prove a simpler observa-

tion. The proof of this simpler observation contains all the

ideas we need to prove Theorem 4, and therefore, makes the

proof easier to understand. To state the simpler observation,

let us define the notion of a one pass algorithm. A one pass

algorithm is one that reads each symbol of the input at most

once. Formally, one can think of a one pass algorithm as a

Turing machine with a read-only input tape and a read-write

worktape, where the input head is constrained to move right

in each step. The space requirements of such an algorithm

(as always) is measured in terms of the number of cells used

on the work-tape.

Lemma 16. Let A be a one pass algorithm for DeadlockPred
using space S (n). Then S (n) = Ω(n).

Proof of Lemma 16. Consider the language Ln = {uv |u,v ∈
{0, 1}n and u = v}. Observe that any (finite) automaton rec-

ognizing Ln must have at least 2
n
states. This is because for

any automaton M with < 2
n
states, there must be strings

u1 , u2 ∈ {0, 1}
n
such that M reaches the same state on

both u1 and u2. HenceM either accepts both u1u1 and u2u1
or rejects both of them, which means that M cannot be rec-

ognizing Ln . Therefore, any one pass algorithm for Ln uses

space Ω(n).
Our proof of Lemma 16 will essentially “reduce” Ln to

DeadlockPred, for every n — given a stringw , we will con-

struct a trace σn with constantly many (i.e., independent of

n) threads, locks, and variables such thatw ∈ Ln if and only

if σn < DeadlockPred; moreover |σ | = O (n). Specifically, the
trace we construct will have 5 threads, three locks {ℓ,m,n},
and 9 variables {p,q, s,u,v,x0,x1,y0,y1}. To describe the re-

duction, let fix a string w = b1b2 · · ·bnc1c2 · · · cn that is a

candidate input to Ln .
It will be convenient to introduce some notation to de-

note events that will constitute the trace σn . The bits bi and
18
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Algorithm 2: Optimized vector clock algorithm for ≤DCP

procedure Initialization
1 for t ∈ Threads do
2 Pt := ⊥;

3 Ht := ⊥[1/t];

4 Tt = ⊥[1/t]

5 for ℓ do
6 Acqt, ℓ := ∅;

7 Relt, ℓ := ∅

8 for ℓ ∈ Locks do
9 Pℓ := ⊥;

10 Hℓ := ⊥;

11 for x ∈ Vars do
12 rThreadsx = ∅;
13 LWTx = NIL

14 Hw
x := ⊥;

15 for t ∈ Threads do Hr
t,x := ⊥;

procedure acquire(t , ℓ)
16 Ht := Ht ⊔ Hℓ ;

17 Pt := Pt ⊔ Pℓ ;

18 for t ′ , t do
19 Acqt ′, ℓ · Enqueue(⟨t ,Tt (t )⟩)

procedure release(t , ℓ)
20 while Acqt, ℓ .nonempty() do
21 ⟨t ′, c ′⟩ := Acqt, ℓ · Front()

22 H ′ := Relt, ℓ · Front()

23 if c ′ > Pt (t ′) then
24 break;

25 if c ′ > T(t ′) then
26 Pt := Pt ⊔ H

′
;

27 Acqt, ℓ · Dequeue();

28 Relt, ℓ .Dequeue();

29 Hℓ := Ht ; Pℓ := Pt ;

30 for t ′ , t do
31 Relt ′, ℓ · Enqueue(Ht )

32 Tt (t )++; Ht (t )++;

procedure read(t , x)
33 if Hw

x (LWTx ) > Tt (LWTx ) then
34 Pt := Pt ⊔ H

w
x ;

35 Ht := Ht ⊔ H
w
x ;

36 Hr
t,x := Ht ;

37 rThreadsx := rThreadsx ∪ {t };
38 Tt (t )++; Ht (t )++;

procedure write(t , x)
39 for t ′ ∈ rThreadsx do
40 if Hr

t ′,x (t
′) > Tt (t

′) then
41 Pt := Pt ⊔ H

r
t ′,x ;

42 Ht := Ht ⊔ H
r
t ′,x ;

43 if Hw
x (LWTx ) > Tt (LWTx ) then

44 Pt := Pt ⊔ H
w
x ;

45 Ht := Ht ⊔ H
w
x ;

46 Hw
x := Ht ;

47 rThreadsx = ∅;
48 LWTx = t ;

49 Tt (t )++; Ht (t )++;

procedure fork(tp , tc)
50 Htc := Htp [1/tc ];

51 Ttc := Ttp [1/tc ];

52 Ptc := Ptp ;

53 Ttp (tp )++; Htp (tp )++;

procedure join(tp , tc)
54 Htp := Htp ⊔ Htc ;

55 Ttp := Ttp ⊔ Ttc ;

56 Ptp := Ptp ⊔ Ptc ;

ci of w will be encoded as reads and writes on variables

{x0,x1,y0,y1}. The variable chosen to encode this bit will

depend on the value of the bit bi /ci and whether the index i
is odd or even; if i is odd then we use {x0,x1} and if i is even
then we use {y0,y1}. The bit bi will be encoded as a single

event (denoted) [bi ]
2

w, while for ci we will have two events

[ci ]
3

w and [ci ]
4

r .

[bi ]
2

w =

{
⟨2, w(xbi )⟩ if i is odd
⟨2, w(ybi )⟩ otherwise

[ci ]
3

w =

{
⟨3, w(xci )⟩ if i is odd
⟨3, w(yci )⟩ otherwise

[ci ]
4

r =

{
⟨4, r(xci )⟩ if i is odd
⟨4, r(yci )⟩ otherwise

The variables {p,q, s,u,v} will each be shared between 2

threads with one thread the exclusive writer and the other

the exclusive reader. The types of each variable are as follows:

p is written by 1 and read by 2; q is written by 2 and read

by 4; s is written by 3 and read by 4; u is written by 3 and

read by 5; and finallyv is written by 4 and read by 5. We will

denote access events on this variables as follows.

[p]1w = ⟨1, w(p)⟩ [p]2r = ⟨2, r(p)⟩
[q]2w = ⟨2, w(q)⟩ [q]4r = ⟨4, r(q)⟩
[s]3w = ⟨3, w(s )⟩ [s]4r = ⟨4, r(s )⟩
[u]3w = ⟨3, w(u)⟩ [u]5r = ⟨5, r(u)⟩
[v]4w = ⟨4, w(v )⟩ [v]5r = ⟨5, r(v )⟩

While there will be many access events on variable s , there
will be exactly one read andwrite event on the other variables

in the trace σ . There will be the acquire and release events on
locks ℓ andm that will form a deadlock pattern. The acquire

events on these locks will be named as follows.

[a]1
ℓ
= ⟨1, acq(ℓ)⟩ [a]5

ℓ
= ⟨5, acq(ℓ)⟩

[a]1m = ⟨1, acq(m)⟩ [a]5m = ⟨5, acq(m)⟩

Their matching release events will just be denoted using

the matchσn (·) predicate. Finally, there will be two acquire

events on lock n which will be denoted as f and д.

f = ⟨1, acq(n)⟩ д = ⟨5, acq(n)⟩

As before the releases corresponding to f and д will be de-

noted using the matchσn (·) predicate.
For n = 5, the trace σ5 is shown in Figure 9; in this trace

we have explicitly written all events except [bi ]
2

w, [ci ]
3

w and

[ci ]
4

r , instead of using the notation introduced above. For a
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t1 t2 t3 t4 t5

1 acq(n)
2 w(p)
3 r(p)
4 [b1]

2

w
5 [b2]

2

w
6 [b3]

2

w
7 [b4]

2

w
8 [b5]

2

w
9 w(q)
10 acq(ℓ)
11 acq(m)
12 rel(m)
13 rel(ℓ)
14 rel(n)
15 [c1]

3

w
16 w(u)
17 [c2]

3

w
18 w(s )
19 r(s )
20 [c1]

4

r
21 [c3]

3

w
22 w(s )
23 r(s )
24 [c2]

4

r
25 [c4]

3

w
26 w(s )
27 r(s )
28 [c3]

4

r
29 [c5]

3

w
30 w(s )
31 r(s )
32 [c4]

4

r
33 r(q)
34 [c5]

4

r
35 w(v )
36 acq(n)
37 r(u)
38 rel(n)
39 acq(m)
40 r(v )
41 acq(ℓ)
42 rel(ℓ)
43 rel(m)

Figure 9. Trace σ5 used in the linear space lower bound for

streaming algorithms.

general n, the trace σn is the following; here we will use the

notation for events introduced in the previous paragraph.

f · [p]1w · [p]
2

r · [b1]
2

w · · · [bn]
2

w · [q]
2

w·

[a]1
ℓ
· [a]1m ·matchσn ([a]

1

m ) ·matchσn ([a]
1

ℓ
) ·matchσn ( f )·

[c1]
3

w · [u]
3

w · [c2]
3

w · [s]
3

w · [s]
4

r · [c1]
4

r ·

[c3]
3

w · [s]
3

w · [s]
4

r · [c2]
4

r · · · [ci ]
3

w · [s]
3

w · [s]
4

r · [ci−1]
4

r · · ·

[cn]
3

w · [s]
3

w · [s]
4

r · [cn−1]
4

r · [q]
4

r · [cn]
4

r · [v]
4

w·

д · [u]5r ·matchσn (д)·
[a]5m · [v]

5

r · [a]
5

ℓ
·matchσn ([a]

5

ℓ
) ·matchσn ([a]

5

m )

Before sketching the correctness of the reduction, let us

make some simple observations about the trace σn . We begin

by identifying the last write events of different read events.

lwσn ([p]
2

r ) = [p]1w lwσn ([q]
4

r ) = [q]2w
lwσn ([u]

5

r ) = [u]3w lwσn ([v]
5

r ) = [v]4w

In addition, the last write event for every [s]4r -event is the
[s]3w-event immediately preceding it. Next, notice that the use

of {x0,x1} to encode ci when i is odd, and {y0,y1} when i is
even, means that lwσn ([ci ]

4

r ) = [ci ]
3

w. Next, observe that the

presence of [v]4w, [s]
3

w, and [q]2w as the last events of threads

4, 3, and 2, respectively, means that any correct reordering

of σn that contains the event [v]5r also contains all the events
of threads 2, 3, and 4.

Wewill now argue that ifw ∈ Ln — i.e.,bi = ci for every i —
then the deadlock pattern formed by events ⟨[a]1

ℓ
, [a]1m , [a]

5

m , [a]
5

ℓ
⟩

is not schedulable. The reasoning is based on observing that

certain events must be ordered in every correct reordering of

σn . The first observation is that [cn]
4

r must be before [a]5
ℓ
be-

cause of the events ([v]4w, [v]
5

r ). Next, the events ([q]
2

w, [q]
4

r )
ensure that [bn]

2

w must be before [cn]
4

r . Since bn = cn and

lwσn ([cn]
4

r ) = [cn]
3

w, we must have [bn]
2

w before [cn]
3

w. The

last pair of ([s]3w, [s]
4

r ) events ensure that now we must have

[bn−1]
2

w before [cn−1]
4

r . Again, bn−1 = cn−1 coupled with last

write properties, mean that we can conclude that [bn−1]
2

w
must be before [cn−1]

3

w. This reasoning can be repeatedly

applied to conclude that for every i , [bi ]
2

w must be before

[ci ]
3

w. In particular, that means that [b1]
2

w is before [c1]
3

w. Now

the pair ([u]3w, [u]
5

r ) ensure that [c1]
3

w is before matchσn (д).
These observation together with the fact that f is before

[b1]
2

w (because of the pair ([p]1w, [p]
2

r )) imply that f is be-

fore matchσn (д) in every correct reordering. Since correct

reorderings preserve lock semantics, we can strengthen this

observation to conclude that matchσn ( f ) must be before д.
Finally, as [a]1m is inside CSσn ( f ), we must have [a]1m before

д and therefore, before [a]5m . This means that the deadlock

pattern is not schedulable.

Let us now show that ifw < Ln then the deadlock pattern

⟨[a]1
ℓ
, [a]1m , [a]

5

m , [a]
5

ℓ
⟩ is schedulable. If w < Ln , then for

some i , bi , ci . Consider the following trace σ

[c1]
3

w · [u]
3

w · д · [u]
5

r ·matchσn (д) · [a]
5

m ·

[c2]
3

w · [s]
3

w · [s]
4

r · [c1]
4

r · f · [p]
1

w · [p]
2

r ·

[b1]
2

w · [c3]
3

w · [s]
3

w · [s]
4

r · [c2]
4

r ·

[b2]
2

w · [c4]
3

w · [s]
3

w · [s]
4

r · [c3]
4

r · · ·

[bi−2]
2

w · [ci ]
3

w · [s]
3

w · [s]
4

r · [ci−1]
4

r · [bi−1]
2

w · [bi ]
2

w·

[bi+1]
2

w · [ci+1]
3

w · [s]
3

w · [s]
4

r · [ci ]
4

r · · ·

[bj ]
2

w · [c j ]
3

w · [s]
3

w · [s]
4

r · [c j−1]
4

r · · ·

[bn]
2

w · [q]
2

w · [cn]
3

w · [s]
3

w · [s]
4

r · [cn−1]
4

r · [q]
4

r · [cn]
4

r ·

[v]4w · [v]
5

r

Observe that σ is correct reordering of σn , and at this point

threads 1 and 5 are deadlocked. □

Let us now return to the proof of Theorem 4. Recall that in

communication complexity [23], Alice and Bob have input

strings u and v , respectively, and their goal is to compute

some predicate on their joint inputs (u,v ). In doing so, we
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only measure the number of bits Alice and Bob communicate

to each other. Now, consider the problem where Alice and

Bob want to determine if their inputs u and v are equal. It

is well know [23] any deterministic protocol solving this

problem must communicate Ω(n) bits, n is the length of

strings u and v ; in other words, there is no better algorithm

than the naïve one where Alice (or Bob) sends her entire

input to Bob (Alice). Now consider the problem defined by

the language

Kn = {u#
nv |u,v ∈ {0, 1}n and u = v}.

Consider any Turing machine M that solves Ln ; here, we
consider the usual Turing machine model whereM can go

back and forth on its input. IfM ’s running time isT (n) then it

makes at most
T (n)
n sojourns across #

n
, since it takes n steps

to cross the substring #
n
. If M’s space usage is S (n) then

each trip across #
n
“communicates” S (n)-bits from u to v (or

vice versa). Thus, the total number of bits communicated

duringM’s computation on u#nv is at most
T (n)S (n)

n , which

from the communication complexity lower bound we know

to be at least n. Putting these observations together, we can

argue that any Turing machine solving Kn has the property

that T (n)S (n) = Ω(n2). Now we can reduce membership in

Kn to deadlock prediction as in Lemma 16, except that the

trace we construct will pad σn with #
n
“junk” events between

matchσn ( f ) and [c1]
3

w. This establishes Theorem 4.

D Algorithm for Incorporating Data Flow
We first prove Lemma 7.

Proof of Lemma 7. Let π = filter(σ , IrrAccσ ). We are given

that ρ is a correct reordering of π with respect to DF⊤. Let τ
be any sequence that respects ≤σTO and filter(τ , IrrAccσ ) = ρ.
Clearly, such a τ should exist because we can simply close the

set Eventsρ with respect to ≤σTO and schedule all extra events

as late as possible, as long as they are consistent with ≤σTO.

Observe that since all acquires and releases are preseved by

filtering, since ρ is well formed, so is τ . Thus, τ is a trace.

To prove that τ is a correct reordering of σ with respect

to DFbr, we just need to ensure that certain read events are

present and last write of these events is preserved. DFbrσ
is only non-empty for branch-events. Consider a branch

event b ∈ Eventsτ and a read-event e ∈ RelRdsσ (b); with-
out loss of generality, let us assume that e is a r(x )-event.
Observe that since b < IrrAccσ and filter(τ , IrrAccσ ) = ρ,
we have that b ∈ Eventsρ . Thus, e ∈ Eventsρ . Again since

e < IrrAccσ , we have e ∈ Eventsτ . Next, since e is a rel-

evant read, we have Writesσ (x ) = Writesπ (x ). Therefore,
we have lwσ (e ) = lwπ (e ). Since ρ is a correct reordering of

π with respect to DF⊤, we have lwρ (e ) = lwπ (e ). Finally,
we again haveWritesτ (x ) =Writesρ (x ), which means that

lwτ (e ) = lwρ (e ). Putting all these observations together, we

have lwτ (e ) = lwσ (e ). Thus, τ is a correct reordering of σ
with respect to DFbrσ . □

We describe our algorithm for predicting deadlocks in

trace σ for correct reorderings with respect to DFbr. We

begin by defining a simple partial order on events of σ that

captures data flow dependencies.

Definition 8. ≤σDF⊆ Eventsσ × Eventsσ is a smallest partial

order such that for any e1, e2 with e1 ≤
σ
tr e2, (a) if thr(e1) = thr(e2)

then e1 ≤
σ
DF e2, and (b) if e1 = lwσ (e2) then e1 ≤

σ
DF e2.

Observe that the following proposition follows trivially

from the definitions.

Proposition 17. If e1 ∈ Readsσ and e1 ≤
σ
DF e2 then e1 ∈

RelRdsσ (e2).

The partial order can be easily computed by a simple, one

pass vector clock algorithm that increments its local clock

after every write-event, and updates its entire vector clock

at reads using the vector clock of the last write on the same

variable. For an event e ,CDF
e will denote the vector timestamp

of e that is consistent with ≤σDF. For a thread t and variable x ,
let first(t ,x ) denote the first event of the form ⟨t , r(x )⟩; this
maybe undefined, if thread t does not have any r(x )-events.
As per this notation,CDF

first(t,x ) is the vector timestamp of first

r(x )-event in t . Next, define BDF =
⊔

e ∈Branchesσ
CDF
e ; observe

that for a read event e , CDF
e ⊑ B

DF
if and only there is some

branch-event b such that e ≤σDF b. Finally, define

RelVarσ (x ) iff ∃t ∈ Threadsσ . CDF
first(t,x ) ⊑ B

DF.

Observe that using this notation we can define the set of

relevant accesses as

RelAccσ = {e ∈ Readsσ |CDF
e ⊑ B

DF} ∪

{e ∈ Writesσ (x ) | x ∈ RelVarσ (x )}.
(1)

We can now describe our two-phase algorithm. In Phase

1, we (a) run the vector clock algorithm for ≤DF while main-

taining BDF and CDF
first(t,x ) for each (t ,x ), and (b) at the end

return BDF and RelVarσ (x ) for each x . In Phase 2, for each

event e in trace σ , we do the following.

1. If e is a data access event that does not belong to

RelAccσ as defined by Equation 1, we skip e .
2. Otherwise, we process e as per algorithm in Section 4.

Correctness follows from the argument in Section 5.

E Additional Discussion in Evaluation
E.1 Custom Benchmarks
We list here the three custom examples used in our evalua-

tion.

The next interesting benchmark is TrueDeadlock.java

shown in Figure 10. Here, thread T1 acquires lock L1 and

then forks thread T 2. At the same time T 3 acquires lock L2.
Now none of these threads can proceed—T3 waits for lock
L1, L1 is acquired by T 1, which is waiting for T 2 to end and

T2 is waiting for lock L2. This deadlock is missed by Dirk

because Dirk cannot identify a deadlock pattern here.
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public class TrueDeadlock {

public static Object L1 = new Object();
public static Object L2 = new Object();

public static void main (String [] args) {
T1 t1 = new T1();
T3 t3 = new T3();
t1.start();
t3.start();

}

static class T1 extends Thread {
public void run () {
synchronized (L1) {
T2 t2 = new T2();
t2.start();
try{
t2.join();

}
catch(Exception ex){
}

}
}

}

static class T2 extends Thread {
public void run () {

synchronized (L2) {
}

}
}

static class T3 extends Thread {
public void run () {

synchronized (L2) {
synchronized (L1) {
}

}
}

}
}

Figure 10. TrueDeadlock.java

Finally Figure 11 describes a Java program FalseDead-

lock.java. This program does not have a deadlock because

of a common lock L1 acquired in a different thread. Dirk

identifies this as a deadlock pattern. To our surprise, Dirk

also tags this program a deadlock.

The program LongDeadlock.java (Figure 12) is a simple

program with a single deadlock pattern which is predictable.

The parameter ITERS in this program can be varied, thereby

giving traces of different sizes. We generated traces by vary-

ing ITERS in the set {10n }9n=1. The time taken to analyze

these traces has been depicted in Figure 13. Dirk does not

report any deadlock for n > 2 and also times out (with a

limit of 24 hours) for ITERS = 10000.

E.2 Additional Data
In Table 2, we report additional information about the traces

generated. The Columns 10-12 denote the number of dead-

lock patterns in the trace. For Transfer and ArrayList, the

data flow incorporation did indeed point outmore deadlocks.
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public class FalseDeadlock {

public static Object L1 = new Object();
public static Object L2 = new Object();
public static Object L3 = new Object();

public static long x, y;
public static final long ITERS = 1000;

public static void main (String [] args) {
x = 0;
y = 0;
T1 t1 = new T1();
T3 t3 = new T3();
t1.start();
t3.start();
try{

t1.join();
}
catch(Exception ex){

}
try{

t3.join();
}
catch(Exception ex){

}
}

static class T1 extends Thread {
public void run () {
synchronized (L1) {
T2 t2 = new T2();
t2.start();
try{

t2.join();
}
catch(Exception ex){

}
}

}
}

static class T2 extends Thread {
public void run () {

synchronized (L2) {
synchronized (L3) {

for(int i = 0; i < ITERS; i++){
x = x + 1;

}
}

}
}
}

static class T3 extends Thread {
public void run () {

synchronized (L1) {
synchronized (L3) {
synchronized (L2) {

for(int i = 0; i < ITERS; i++){
y = y + 1;

}
}
}

}
}

}
}

Figure 11. FalseDeadlock.java
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public class LongDeadlock {

public static Object L1 = new Object();
public static Object L2 = new Object();
public static long x, y;
public static final long ITERS = 1000;

public static void main (String [] args) {
x = 0;
y = 0;
new T1().start();
new T2().start();

}

static class T1 extends Thread {
public void run () {
synchronized (L1) {
synchronized (L2) {

for(int i = 0; i < ITERS; i++){

x = x + 1;
}

}
}

}
}

static class T2 extends Thread {
public void run () {

synchronized (L2) {
synchronized (L1) {

for(int i = 0; i < ITERS; i++){
y = y + 1;

}
}

}
}

}
}

Figure 12. LongDeadlock.java

Table 2. Columns 2-9 denote the different kinds of events in the traces logged. Columnd 10-12 denote the different number of

deadlock patterns (counting every pattern as many times it repeats in the trace) in the trace, identifying by Goodlock, DCP

and DCPDF

1 2 3 4 5 6 7 8 9 10 11 12

Events Dynamic Patterns

Benchmark Total Acquires Releases Reads Writes Forks Joins Branches Goodlock2 DCP DCPDF

Deadlock 37 4 4 8 6 2 0 0 1 0 1

TrueDeadlock 38 4 4 4 2 3 3 0 1 1 1

PickLock 50 8 8 8 4 2 2 0 2 2 2

Dining 58 4 4 10 8 2 0 17 1 1 1

Bensalem 59 10 10 10 3 3 1 0 1 1 1

Transfer 62 4 4 13 12 2 2 6 1 0 1

FalseDeadlock 651 6 6 206 205 3 3 202 0 0 0

DBCP1 1.78K 19 17 557 559 2 0 279 1 1 1

Derby2 1.93K 7 4 694 692 2 0 253 1 1 1

Log4j2 2.23K 20 16 757 392 3 0 507 1 1 1

DBCP2 2.67K 22 20 906 485 2 0 652 1 1 1

LongDeadlock 6.03K 4 4 2.0K 2.0K 2 0 2.0K 1 1 1

HashMap 45.52K 1.09K 1.09K 13.66K 9.2K 338 0 7.93K 9 9 9

ArrayList 45.87K 1.44K 1.44K 15.13K 7.78K 450 0 6.28K 25 15 25

lusearch-fix 304.02M 206.4K 206.4K 151.53M 40.98M 8 0 70.84M 0 0 0

pmd 6.6M 54 54 3.27M 600.21K 0 0 1.84M 0 0 0

fop 24.48M 1.22K 1.22K 9.72M 1.9M 0 0 7.69M 0 0 0

luindex 26.74M 338 338 13.97M 2.69M 0 0 7.54M 0 0 0

tomcat 30.64M 3.53K 3.52K 16.78M 2.11M 41 0 9.49M 0 0 0

batik 63.63M 22.47K 22.47K 27.15M 11.62M 1 0 18.97M 0 0 0

eclipse 104.75M 281.55K 281.55K 42.96M 6.65M 14 3 42.51M 226 0 0

xalan 203.76M 447.16K 447.16K 104.36M 15.03M 10 10 55.35M 0 0 0

jython 242.99M 4.1M 4.1M 72.3M 14.0M 1 0 65.18M 0 0 0

avrora 1.45B 1.07M 1.07M 677.5M 207.07M 3 3 252.0M 0 0 0
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Figure 13. Performance of DeadTrack and Dirk on traces

generated by LongDeadlock by varying number of iterations.
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