Introduction to Hoare Logic

Umang Mathur

Department of Computer Science
University of Illinois, Urbana Champaign

October 22, 2015
Outline

1. Introduction
 - Bird’s Eye View
 - Formal Introduction

2. Preliminaries
 - A simple Imperative Language
 - A simple assertion Language
 - Assertion Semantics
 - Example Program

3. Hoare Logic
 - Hoare Triples: Syntax and Semantics
 - Axioms

4. Soundness and Completeness
 - Soundness
 - Relative Completeness
 - Weakest Precondition
Outline

1. Introduction
 - Bird’s Eye View
 - Formal Introduction

2. Preliminaries
 - A simple Imperative Language
 - A simple assertion Language
 - Assertion Semantics
 - Example Program

3. Hoare Logic
 - Hoare Triples: Syntax and Semantics
 - Axioms

4. Soundness and Completeness
 - Soundness
 - Relative Completeness
 - Weakest Precondition
Also known as **Floyd Hoare Logic** is a formal system for reasoning rigorously about the correctness of computer programs.
Bird’s Eye View

- Also known as **Floyd Hoare Logic** is a formal system for reasoning rigorously about the correctness of computer programs

- First proposed by C. A. R. Hoare (Turnig Award, 1980)
Bird’s Eye View

- Also known as **Floyd Hoare Logic** is a formal system for reasoning rigorously about the correctness of computer programs.

- First proposed by C. A. R. Hoare (Turnig Award, 1980)

- Original Idea seeded by Robert Floyd (Turing Award, 1978)
Outline

1. Introduction
 - Bird’s Eye View
 - Formal Introduction

2. Preliminaries
 - A simple Imperative Language
 - A simple assertion Language
 - Assertion Semantics
 - Example Program

3. Hoare Logic
 - Hoare Triples: Syntax and Semantics
 - Axioms

4. Soundness and Completeness
 - Soundness
 - Relative Completeness
 - Weakest Precondition
Formally
Formally

- Proof System for reasoning about *partial correctness* of certain kinds of programs
Formally

- Proof System for reasoning about *partial correctness* of certain kinds of programs
 - Set of axioms
Formally

- Proof System for reasoning about *partial correctness* of certain kinds of programs
 - Set of axioms
 - Rules of Inference
Formally

- Proof System for reasoning about *partial correctness* of certain kinds of programs
 - Set of axioms
 - Rules of Inference
 - Underlying logic
Formally

- Proof System for reasoning about *partial correctness* of certain kinds of programs
 - Set of axioms
 - Rules of Inference
 - Underlying logic

- **Motivation**: Assertion checking in (sequential) programs
Formally

- Proof System for reasoning about \textit{partial correctness} of certain kinds of programs
 - Set of axioms
 - Rules of Inference
 - Underlying logic

- \textbf{Motivation} : Assertion checking in (sequential) programs (can do much more !)
Outline

1. Introduction
 - Bird’s Eye View
 - Formal Introduction

2. Preliminaries
 - A simple Imperative Language
 - A simple assertion Language
 - Assertion Semantics
 - Example Program

3. Hoare Logic
 - Hoare Triples: Syntax and Semantics
 - Axioms

4. Soundness and Completeness
 - Soundness
 - Relative Completeness
 - Weakest Precondition
A simple Imperative Language
A simple Imperative Language

- Expressions:

\[E ::= n \mid x \mid -E \mid E + E \mid \ldots \]
A simple Imperative Language

- **Expressions**:
 \[E ::= \ n \ | \ x \ | \ -E \ | \ E + E \ | \ldots \]

- **Boolean Conditions**:
 \[B ::= \ \text{true} \ | \ E = E \ | \ E \geq E \ | \neg B \ | \ B \land B \]
A simple Imperative Language

- Expressions:
 \[E ::= n \mid x \mid -E \mid E + E \mid \ldots \]

- Boolean Conditions:
 \[B ::= \text{true} \mid E = E \mid E \geq E \mid \neg B \mid B \land B \]

- Program Statements:
 \[P ::= x := E \mid P;P \mid \text{if } B \text{ then } P \text{ else } P \mid \text{while } B \ P \]
Outline

1. Introduction
 - Bird’s Eye View
 - Formal Introduction

2. Preliminaries
 - A simple Imperative Language
 - A simple assertion Language
 - Assertion Semantics
 - Example Program

3. Hoare Logic
 - Hoare Triples: Syntax and Semantics
 - Axioms

4. Soundness and Completeness
 - Soundness
 - Relative Completeness
 - Weakest Precondition
A simple Assertion Language
A simple Assertion Language

Assertion : A logical formula describing a set of valuations on program variables with some *interesting* property.
A simple Assertion Language

Assertion : A logical formula describing a set of valuations on program variables with some *interesting* property. Expressed in the underlying logic (FO here)
A simple Assertion Language

Assertion: A logical formula describing a set of valuations on program variables with some *interesting* property.

Expressed in the underlying logic (FO here)

- Expressions:
 \[E ::= n \mid x \mid -E \mid E + E \mid \ldots \]
A simple Assertion Language

Assertion: A logical formula describing a set of valuations on program variables with some *interesting* property.

Expressed in the underlying logic (FO here)

- **Expressions**:

 \[E ::= n \mid x \mid -E \mid E + E \mid \ldots \]

Here, the set of variables is not restricted to the set of program variables.
A simple Assertion Language

Assertion: A logical formula describing a set of valuations on program variables with some *interesting* property.

Expressed in the underlying logic (FO here)

- **Expressions**:
 \[E ::= n | x | -E | E + E | \ldots \]

 Here, the set of variables is not restricted to the set of program variables.

- **Basic Propositions**:
 \[B ::= E = E | E \geq E \]
A simple Assertion Language

Assertion: A logical formula describing a set of valuations on program variables with some *interesting* property.

Expressed in the underlying logic (FO here)

- **Expressions**:
 \[E ::= n \mid x \mid -E \mid E + E \mid \ldots \]

 Here, the set of variables is not restricted to the set of program variables.

- **Basic Propositions**:
 \[B ::= E = E \mid E >= E \]

- **Assertions**:
 \[A ::= true \mid B \mid \neg A \mid A \land A \mid \forall v \ A \]
Assertion Semantics

- As program executes, the valuation of variables (read state) changes
Assertion Semantics

- As program executes, the valuation of variables (read \textit{state}) changes.
- An execution of a program statement, transforms one state to another state.
Assertion Semantics

- As program executes, the valuation of variables (read state) changes.
- An execution of a program statement, transforms one state to another state.
- At some point during execution, let the state be \(s \).
Assertion Semantics

- As program executes, the valuation of variables (read state) changes.
- An execution of a program statement, transforms one state to another state.
- At some point during execution, let the state be s.
- Program satisfies assertion A at this point iff $s \models A$.

\[
\begin{align*}
 s \models B & \text{ iff } \Lbracket B \Rbracket_s = \text{true} \\
 s \models \neg A & \text{ iff } s \not\models A \\
 s \models A_1 \land A_2 & \text{ iff } s \models A_1 \text{ and } s \models A_2 \\
 s \models \forall v. A & \text{ iff } \forall x \in \mathbb{Z}. s[v \leftarrow x] \models A
\end{align*}
\]

Here, the free variables in assertions are assumed to be included in the set of program variables.
Outline

1 Introduction
 - Bird’s Eye View
 - Formal Introduction

2 Preliminaries
 - A simple Imperative Language
 - A simple assertion Language
 - Assertion Semantics
 - Example Program

3 Hoare Logic
 - Hoare Triples: Syntax and Semantics
 - Axioms

4 Soundness and Completeness
 - Soundness
 - Relative Completeness
 - Weakest Precondition
Example Program

Consider the following program written in our imperative language, annotated with assertions from our assertions language:
Example Program

Consider the following program written in our imperative language, annotated with assertions from our assertions language:

```
(ensures n >= 0)
k := 0;
j := 1;
while (k != n) {
  k := k+1;
  j := 2*j;
}
(assert j = 2^n)
```
Example Program

Consider the following program written in our imperative language, annotated with assertions from our assertions language:

\[
\begin{align*}
&(\text{ensures } n \geq 0) \\
k &:= 0; \\
j &:= 1; \\
\text{while (} k \neq n \text{) } \\
&
\begin{align*}
k &:= k + 1; \\
j &:= 2 \cdot j;
\end{align*}
\end{align*}
\]

\(\text{(assert } j = 2^n)\)

We wish to check if starting from a positive value for \(n\), is the value of \(j\) equal to \(2^n\) after having executed all the statements?
Hoare Triple: Syntax
A **Hoare triple** $\{ \phi_1 \} P \{ \phi_2 \}$ is a formula:
A **Hoare triple** $\{\phi_1\}P\{\phi_2\}$ is a formula:

- ϕ_1 and ϕ_2 are formulae in a base logic (FO logic for us)
A Hoare triple $\{ \phi_1 \} P \{ \phi_2 \}$ is a formula:

- ϕ_1 and ϕ_2 are formulae in a base logic (FO logic for us)
- P is a program in our imperative language
A Hoare triple $\{\phi_1\}P\{\phi_2\}$ is a formula:

- ϕ_1 and ϕ_2 are formulae in a base logic (FO logic for us)
- P is a program in our imperative language
- Note how programs and formulae in base logic are intertwined
A **Hoare triple** $\{\phi_1\}P\{\phi_2\}$ is a formula:

- ϕ_1 and ϕ_2 are formulae in a base logic (FO logic for us)
- P is a program in our imperative language
- Note how programs and formulae in base logic are intertwined
- ϕ_1: **Precondition**
A **Hoare triple** \(\{ \phi_1 \} P \{ \phi_2 \} \) is a formula:

- \(\phi_1 \) and \(\phi_2 \) are formulae in a base logic (FO logic for us)
- \(P \) is a program in our imperative language
- Note how programs and formulae in base logic are intertwined
- \(\phi_1 \): **Precondition** , \(\phi_2 \): **Postcondition**
A **Hoare triple** $\{ \phi_1 \} P \{ \phi_2 \}$ is a formula:

- ϕ_1 and ϕ_2 are formulae in a base logic (FO logic for us)
- P is a program in our imperative language
- Note how programs and formulae in base logic are intertwined
- ϕ_1: **Precondition**, ϕ_2: **Postcondition**

Examples of syntactically correct Hoare triples:
A **Hoare triple** \(\{\phi_1\} P \{\phi_2\} \) is a formula:

- \(\phi_1\) and \(\phi_2\) are formulae in a base logic (FO logic for us)
- \(P\) is a program in our imperative language
- Note how programs and formulae in base logic are intertwined
- \(\phi_1\): **Precondition**, \(\phi_2\): **Postcondition**

Examples of syntactically correct Hoare triples:

- \(\{(n \geq 0) \land (n^2 > 28)\} \ m := n + 1; \ m := m \ast m \ \neg(m = 36)\)
A **Hoare triple** $\{\phi_1\}P\{\phi_2\}$ is a formula:

- ϕ_1 and ϕ_2 are formulae in a base logic (FO logic for us)
- P is a program in our imperative language
- Note how programs and formulae in base logic are intertwined
- ϕ_1: **Precondition**, ϕ_2: **Postcondition**

Examples of syntactically correct Hoare triples:

- $\{(n \geq 0) \land (n^2 > 28)\} \ m := n + 1; \ m := m \ast m \ \{\neg(m = 36)\}$
- $\{\exists x, y.(y > 0) \land (n = x^y)\} \ n := n \ast (n + 1) \ \{\exists x, y.(n = x^y)\}$
The partial correctness specification $\{\phi_1\}P\{\phi_2\}$ is valid iff starting from a state s satisfying ϕ_1.

The partial correctness specification $\{\phi_1\} P \{\phi_2\}$ is valid iff starting from a state s satisfying ϕ_1,
- Whenever an execution of P terminates in state s', then $s' \models \phi_2$
Hoare Triple : Semantics

- The **partial correctness** specification $\{\phi_1\}P\{\phi_2\}$ is valid iff starting from a state s satisfying ϕ_1,
 - Whenever an execution of P terminates in state s', then $s' \models \phi_2$
- The **total correctness** specification $\{\phi_1\}P\{\phi_2\}$ is valid iff starting from a state s satisfying ϕ_1,
Hoare Triple : Semantics

- The **partial correctness** specification \(\{ \phi_1 \} P \{ \phi_2 \} \) is valid iff starting from a state \(s \) satisfying \(\phi_1 \),
 - Whenever an execution of \(P \) terminates in state \(s' \), then \(s' \models \phi_2 \)

- The **total correctness** specification \(\{ \phi_1 \} P \{ \phi_2 \} \) is valid iff starting from a state \(s \) satisfying \(\phi_1 \),
 - Every execution of \(P \) terminates, and
Hoare Triple: Semantics

- The **partial correctness** specification $\{\phi_1\}P\{\phi_2\}$ is valid iff starting from a state s satisfying ϕ_1,
 - Whenever an execution of P terminates in state s', then $s' \models \phi_2$
- The **total correctness** specification $\{\phi_1\}P\{\phi_2\}$ is valid iff starting from a state s satisfying ϕ_1,
 - Every execution of P terminates, and
 - Whenever an execution of P terminates in state s', then $s' \models \phi_2$
Hoare Triple : Semantics

- The **partial correctness** specification \(\{ \phi_1 \} P \{ \phi_2 \} \) is valid iff starting from a state \(s \) satisfying \(\phi_1 \),
 - Whenever an execution of \(P \) terminates in state \(s' \), then \(s' \models \phi_2 \)

- The **total correctness** specification \(\{ \phi_1 \} P \{ \phi_2 \} \) is valid iff starting from a state \(s \) satisfying \(\phi_1 \),
 - Every execution of \(P \) terminates, and
 - Whenever an execution of \(P \) terminates in state \(s' \), then \(s' \models \phi_2 \)

Partial v/s Total Correctness

For programs without loops, both semantics coincide
Hoare Triple : Semantics

- The **partial correctness** specification \(\{ \phi_1 \} P \{ \phi_2 \} \) is valid iff starting from a state \(s \) satisfying \(\phi_1 \),
 - Whenever an execution of \(P \) terminates in state \(s' \), then \(s' \models \phi_2 \)
- The **total correctness** specification \(\{ \phi_1 \} P \{ \phi_2 \} \) is valid iff starting from a state \(s \) satisfying \(\phi_1 \),
 - Every execution of \(P \) terminates, and
 - Whenever an execution of \(P \) terminates in state \(s' \), then \(s' \models \phi_2 \)

Partial v/s Total Correctness

For programs without loops, both semantics coincide

We will stick to partial correctness semantics and not talk about
Assignment Rule
Assignment Rule

Program Construct

\[E ::= x \mid n \mid E + E \mid E \mid \ldots \]

\[P ::= x := E \]
Assignment Rule

Program Construct

\[E ::= \ x \mid n \mid E + E \mid E \mid \ldots \]

\[P ::= \ x := E \]

Inference Rule

\[\{ \phi([x \leftarrow E]) \} \ x := E \ \{ \phi(x) \} \]

where, \(\phi([x \leftarrow E]) \) replaces every free occurrence of \(x \) in \(\phi \) by \(E \).
Assignment Rule

Program Construct

\[
E ::= x \mid n \mid E + E \mid E \mid \ldots
\]

\[
P ::= x := E
\]

Inference Rule

\[
\{\phi([x \leftarrow E])\} x := E \{\phi(x)\}
\]

where, \(\phi([x \leftarrow E])\) replaces every free occurrence of \(x\) in \(\phi\) by \(E\)

Example:
Assignment Rule

Program Construct

\[E ::= x \mid n \mid E + E \mid E \mid \ldots \]
\[P ::= x ::= E \]

Inference Rule

\[\{ \phi([x \leftarrow E]) \} \quad x ::= E \quad \{ \phi(x) \} \]

where, \(\phi([x \leftarrow E]) \) replaces every free occurrence of \(x \) in \(\phi \) by \(E \)

Example:

\[\{(z \cdot y > 5) \land (\exists x. y = x^x)\} \quad x ::= z \cdot y \quad \{(x > 5) \land (\exists x. y = x^x)\} \]
Assignment Rule

Program Construct

\[E ::= x | n | E + E | E | \ldots \]
\[P ::= x := E \]

Inference Rule

\[\{ \phi([x \leftarrow E]) \} \ x := E \ {\phi(x)} \]

where, \(\phi([x \leftarrow E]) \) replaces every free occurrence of \(x \) in \(\phi \) by \(E \)

Example:

\[\{ (z \cdot y > 5) \land (\exists x. y = x^x) \} \ x := z \cdot y \ \{ (x > 5) \land (\exists x. y = x^x) \} \]

(replace only free occurrences of \(x \) in \(\phi \))
Assignment Rule

Program Construct

\[E ::= x \mid n \mid E + E \mid E \mid \ldots \]

\[P ::= x := E \]

Inference Rule

\[\{ \phi([x \leftarrow E]) \} \ x := E \ \{ \phi(x) \} \]

where, \(\phi([x \leftarrow E]) \) replaces every free occurrence of \(x \) in \(\phi \) by \(E \)

Example:

\[\{(z \cdot y > 5) \land (\exists x. y = x^x)\} \ x := z \cdot y \ \{(x > 5) \land (\exists x. y = x^x)\} \]

(replace only free occurrences of \(x \) in \(\phi \))

Forward Rule ?
Assignment Rule

Program Construct

\[E ::= x \mid n \mid E + E \mid E \mid \ldots \]

\[P ::= x := E \]

Inference Rule

\[\{\phi([x \leftarrow E])\} \ x := E \ \{\phi(x)\} \]

where, \(\phi([x \leftarrow E]) \) replaces every free occurrence of \(x \) in \(\phi \) by \(E \)

Example:

\[\{(z \cdot y > 5) \land (\exists x. y = x^x)\} \ x := z \ast y \ \{(x > 5) \land (\exists x. y = x^x)\} \]

(replace only free occurrences of \(x \) in \(\phi \))

Forward Rule?

\[\{\phi(x)\} \ x := E \ \{\exists x_0 \phi(x_0) \land x = E[x \leftarrow x_0]\} \]
Rule for Sequential Composition
Rule for Sequential Composition

Program Construct

\[P ::= P; P \]
Rule for Sequential Composition

Program Construct

\[P ::= P; P \]

Inference Rule

\[
\begin{array}{c}
\{ \phi \} \; P_1 \; \{ \eta \} \quad \{ \eta \} \; P_2 \; \{ \psi \} \\
\hline
\{ \phi \} \; P_1; P_2 \; \{ \psi \}
\end{array}
\]
Rule for Sequential Composition

Program Construct

\[P ::= P; P \]

Inference Rule

\[
\frac{\{\phi\} \ P_1 \ \{\eta\} \ \{\eta\} \ P_2 \ \{\psi\}}{\{\phi\} \ P_1; P_2 \ \{\psi\}}
\]

Example:

\[
\begin{align*}
\{y + z > 4\} \ y & := y + z \ \{y > 3\} \\
\{y > 3\} \ x & := y + 2 \ \{x > 5\} \\
\{y + z > 4\} \ y & := y + z; \ x := y + 2 \ \{x > 5\}
\end{align*}
\]
Rule of Consequence
Rule of Consequence

Inference Rule

\[
\frac{\phi \Rightarrow \phi_1}{\{\phi\} P \{\psi_1\}} \quad \frac{\psi_1 \Rightarrow \psi}{\{\phi\} P \{\psi\}}
\]

\(\phi \Rightarrow \phi_1\) and \(\psi_1 \Rightarrow \psi\) are implications in underlying (FO) logic
Rule of Consequence

Inference Rule

\[
\frac{\phi \Rightarrow \phi_1 \quad \{\phi_1\} \quad P \quad \{\psi_1\}}{\psi_1 \Rightarrow \psi \quad \{\phi\} \quad P \quad \{\psi\}}
\]

\(\phi \Rightarrow \phi_1\) and \(\psi_1 \Rightarrow \psi\) are implications in underlying (FO) logic

Example:

\[
((y > 4) \land (z > 1)) \Rightarrow (y + z > 5) \quad \{y + z > 5\} \quad y := y + z \quad \{y > 5\} \quad (y > 5) \Rightarrow (y > 3)
\]

\[
\{(y > 4) \land (z > 1)\} \quad y := y + z \quad \{y > 3\}
\]
Rule of Consequence

Inference Rule

\[
\phi \Rightarrow \phi_1 \quad \{\phi_1\} \quad P \quad \{\psi_1\} \quad \psi_1 \Rightarrow \psi
\]

\[
\{\phi\} \quad P \quad \{\psi\}
\]

\[\phi \Rightarrow \phi_1 \text{ and } \psi_1 \Rightarrow \psi \] are implications in underlying (FO) logic

Example:

\[
((y > 4) \land (z > 1)) \Rightarrow (y + z > 5) \quad \{y + z > 5\} \quad y := y + z \quad \{y > 5\} \quad (y > 5) \Rightarrow (y > 3)
\]

\[
\{(y > 4) \land (z > 1)\} \quad y := y + z \quad \{y > 3\}
\]

- Weakest precondition ?
- Strongest postcondition ?
Rule for Conditional Branch

Program Construct

\[E ::= n \mid x \mid -E \mid E + E \mid \ldots \]

\[B ::= \text{true} \mid E = E \mid E \geq E \mid \neg B \mid B \land B \]

\[P ::= \text{if } B \text{ then } P \text{ else } P \]
Rule for Conditional Branch

Program Construct

\[
E := n | x | -E | E + E | \ldots
\]

\[
B := \text{true} | E = E | E >= E | \neg B | B \land B
\]

\[
P := \text{if } B \text{ then } P \text{ else } P
\]

Inference Rule

\[
\begin{align*}
\{ \phi \land B \} & P_1 \{ \psi \} & \{ \phi \land \neg B \} & P_2 \{ \psi \} \\
\{ \phi \} & \text{if } B \text{ then } P_1 \text{ else } P_2 \{ \psi \}
\end{align*}
\]
Rule for Conditional Branch

Program Construct

\[E := n | x | -E | E + E | \ldots \]
\[B := \text{true} | E = E | E \geq E | \neg B | B \land B \]
\[P := \text{if } B \text{ then } P \text{ else } P \]

Inference Rule

\[
\frac{\{\phi \land B\} \ P_1 \ \{\psi\} \quad \{\phi \land \neg B\} \ P_2 \ \{\psi\}}{\{\phi\} \text{ if } B \text{ then } P_1 \text{ else } P_2 \ \{\psi\}}
\]

Example:

\[
\{(y > 4) \land (z > 1)\} \quad y := y + z \quad \{y > 3\} \quad \{(y > 4) \land \neg(z > 1)\} \quad y := y_1 \quad \{y > 3\}
\]
\[
\quad \{y > 4\} \quad \text{if } (z > 1) \text{ then } y := y + z \quad \text{else } y := y - 1 \quad \{y > 3\}
\]
Rule for Conditional Branch

Program Construct

\[E := \ n \ | \ x \ | \ -E \ | \ E + E \ | \ldots \]

\[B := \ \text{true} \ | \ E = E \ | \ E \geq E \ | \ \neg B \ | \ B \land B \]

\[P := \ \text{if } B \ \text{then } P \ \text{else } P \]

Inference Rule

\[
\frac{\{ \phi \land B \} \ P_1 \ \{ \psi \} \quad \{ \phi \land \neg B \} \ P_2 \ \{ \psi \}}{\{ \phi \} \ \text{if } B \ \text{then } P_1 \ \text{else } P_2 \ \{ \psi \}}
\]

Example:

\[
\{(y > 4) \land (z > 1)\} \ y := y + z \ \{y > 3\} \quad \{(y > 4) \land \neg(z > 1)\} \ y := y_1 \ \{y > 3\}
\]

\[
\{y > 4\} \ \text{if } (z > 1) \ \text{then } y := y + z \ \text{else } y := y - 1 \ \{y > 3\}
\]

What can we conclude if we have \(\{\phi \land B\} \ P_1 \ \{\psi_1\} \) and \(\{\phi \land \neg B\} \ P_2 \ \{\psi_2\} \)
Partial Correctness of Loops
Partial Correctness of Loops

Program Construct

\[E ::= n \mid x \mid -E \mid E + E \mid \ldots \]

\[B ::= \text{true} \mid E = E \mid E \geq E \mid \neg B \mid B \wedge B \]

\[P ::= \text{while } B \ P \]
Partial Correctness of Loops

Program Construct

\[E := \ n \ | \ x \ | \ -E \ | \ E + E \ | \ldots \]

\[B := \ true \ | \ E = E \ | \ E >= E \ | \ \neg B \ | \ B \land B \]

\[P := \text{while} \ B \ P \]

Inference Rule

\[
\begin{align*}
\{\phi \land B\} & \ P \ {\{\phi\}} \\
\{\phi\} & \text{while} \ B \ P \ {\{\phi \land \neg B\}}
\end{align*}
\]
Partial Correctness of Loops

Program Construct

\[
E := \ n \ | \ x \ | \ - E \ | \ E + E \ | \ldots \\
B := \text{true} \ | \ E = E \ | \ E \geq E \ | \neg B \ | \ B \land B \\
P := \text{while } B \ P
\]

Inference Rule

\[
\begin{align*}
\{ \phi \land B \} & \ P \ \{ \phi \} \\
\{ \phi \} & \text{while } B \ P \ \{ \phi \land \neg B \}
\end{align*}
\]

- \(\phi \) is **loop invariant**
- Partial Correctness Semantics:
Partial Correctness of Loops

Program Construct

\[E ::= \ n \mid x \mid -E \mid E + E \mid \ldots \]

\[B ::= \ true \mid E = E \mid E \geq E \mid \neg B \mid B \land B \]

\[P ::= \text{while } B \ P \]

Inference Rule

\[\{ \phi \land B \} \ P \ {\phi} \]
\[\{ \phi \} \text{ while } B \ P \ {\phi \land \neg B} \]

- \(\phi \) is **loop invariant**
- Partial Correctness Semantics:
 - If loop does not terminate, Hoare triple is vacuously satisfied
Partial Correctness of Loops

Program Construct

\[E ::= \ n \mid x \mid \neg E \mid E + E \mid \ldots \]

\[B ::= \ true \mid E = E \mid E \geq E \mid \neg B \mid B \land B \]

\[P ::= \text{while } B \ P \]

Inference Rule

\[
\frac{\{\phi \land B\} \quad P \quad \{\phi\}}{\{\phi\} \quad \text{while } B \ P \quad \{\phi \land \neg B\}}
\]

- ϕ is loop invariant

- Partial Correctness Semantics:
 - If loop does not terminate, Hoare triple is vacuously satisfied
 - If it terminates, $\phi \land \neg B$ must be satisfied after termination
Partial Correctness of Loops
Partial Correctness of Loops

\[
\begin{align*}
\{\phi \land B\} & \quad P \quad \{\phi\} \\
\{\phi\} \quad \text{while} \quad & \quad B \quad P \quad \{\phi \land \neg B\}
\end{align*}
\]
Partial Correctness of Loops

Inference Rule

\[
\begin{align*}
\{\phi \land B\} & \ P \ {\phi} \\
\{\phi\} & \ while \ B \ P \ {\phi \land \neg B}
\end{align*}
\]

Example:
Partial Correctness of Loops

Inference Rule

\[
\begin{align*}
\{\phi \land B\} & \Rightarrow P \Rightarrow \{\phi\} \\
\{\phi\} & \text{ while } B \Rightarrow P \Rightarrow \{\phi \land \neg B\}
\end{align*}
\]

Example:

\[
\begin{align*}
\{(y = x + z) \land (z \neq 0)\} & \Rightarrow x := x + 1; z := z - 1 \Rightarrow \{y = x + z\} \\
\{y = x + z\} & \text{ while } (z \neq 0) \Rightarrow x := x + 1; z := z - 1 \Rightarrow \{(y = x + z) \land (z = 0)\}
\end{align*}
\]
Partial Correctness of Loops

Inference Rule

\[
\begin{align*}
\{ \phi \land B \} & \quad P \quad \{ \phi \} \\
\{ \phi \} & \quad \text{while } B \quad P \quad \{ \phi \land \neg B \}
\end{align*}
\]

Example:

\[
\begin{align*}
\{(y = x + z) \land (z \neq 0)\} & \quad x := x + 1; z := z - 1 \quad \{y = x + z\} \\
\{y = x + z\} & \quad \text{while } (z! = 0) \quad x := x + 1; z := z - 1 \quad \{(y = x + z) \land (z = 0)\}
\end{align*}
\]

\[
\begin{align*}
\{(y = x + z) \land \text{true}\} & \quad x := x + 1; z := z - 1 \quad \{y = x + z\} \\
\{y = x + z\} & \quad \text{while } (\text{true}) \quad x := x + 1; z := z - 1 \quad \{(y = x + z) \land \text{false}\}
\end{align*}
\]
Partial Correctness of Loops

Inference Rule

\[
\begin{align*}
\{\phi \land B\} & \quad P \quad \{\phi\} \\
\{\phi\} & \quad \text{while } B \quad P \quad \{\phi \land \neg B\}
\end{align*}
\]

Example:

\[
\begin{align*}
\{(y = x + z) \land (z \neq 0)\} & \quad x := x + 1; z := z - 1 \quad \{y = x + z\} \\
\{y = x + z\} & \quad \text{while } (z! = 0) \quad x := x + 1; z := z - 1 \quad \{(y = x + z) \land (z = 0)\}
\end{align*}
\]

\[
\begin{align*}
\{(y = x + z) \land \text{true}\} & \quad x := x + 1; z := z - 1 \quad \{y = x + z\} \\
\{y = x + z\} & \quad \text{while } (\text{true}) \quad x := x + 1; z := z - 1 \quad \{(y = x + z) \land \text{false}\}
\end{align*}
\]
Partial Correctness of Loops

Inference Rule

\[
\frac{\{\phi \land B\} \quad P \quad \{\phi\}}{\{\phi\} \quad \text{while} \quad B \quad P \quad \{\phi \land \neg B\}}
\]

Example:

\[
\begin{align*}
\{(y = x + z) \land (z \neq 0)\} & \quad x := x + 1; z := z - 1 \quad \{y = x + z\} \\
\{y = x + z\} & \quad \text{while} \quad (z! = 0) \quad x := x + 1; z := z - 1 \quad \{(y = x + z) \land (z = 0)\} \\
\{(y = x + z) \land \text{true}\} & \quad x := x + 1; z := z - 1 \quad \{y = x + z\} \\
\{y = x + z\} & \quad \text{while} \quad \text{(true)} \quad x := x + 1; z := z - 1 \quad \{(y = x + z) \land \text{false}\}
\end{align*}
\]

\[
\{\phi\} \quad \text{while} \quad \text{(true)} \quad P \quad \{\psi\} \quad \text{holds vacuously for all} \quad \phi, \quad P \quad \text{and} \quad \psi
\]
Partial Correctness of Loops

Inference Rule

\[
\begin{array}{c}
\{\phi \land B\} \quad P \quad \{\phi\} \\
\hline
\{\phi\} \quad \text{while } B \quad P \quad \{\phi \land \neg B\}
\end{array}
\]

Example:

\[
\{(y = x + z) \land (z \neq 0)\} \quad x := x + 1; z := z - 1 \quad \{y = x + z\} \\
\{y = x + z\} \quad \text{while } (z! = 0) \quad x := x + 1; z := z - 1 \quad \{(y = x + z) \land (z = 0)\}
\]

\[
\{(y = x + z) \land \text{true}\} \quad x := x + 1; z := z - 1 \quad \{y = x + z\} \\
\{y = x + z\} \quad \text{while } (\text{true}) \quad x := x + 1; z := z - 1 \quad \{(y = x + z) \land \text{false}\}
\]

- \{\phi\} \quad \text{while } (\text{true}) \quad P \quad \{\psi\} \quad \text{holds vacuously for all } \phi, \quad P \quad \text{and } \psi
- can be proved using rule for loops and rules of strengthening (weakening) post(pre) -conditions
Summary of Axioms

- \(\{ \phi([x \leftarrow E]) \} \ x := E \{ \phi(x) \} \)

 Assignment

- \(\{ \phi \} P_1 \{ \eta \} \ {\eta} P_2 \{ \psi \} \)
 \[\{ \phi \} P_1; P_2 \{ \psi \} \]

 Sequential Composition

- \(\{ \phi \land B \} P_1 \{ \psi \} \ {\phi \land \neg B} P_2 \{ \psi \} \)

 Conditional Statement

- \(\{ \phi \} \text{if } B \text{ then } P_1 \text{ else } P_2 \{ \psi \} \)

 Iteration

- \(\{ \phi \land B \} P \{ \psi \} \)
 \[\{ \phi \} \text{while } B \ P \{ \psi \land \neg B \} \]

 Weakening pre-condition, Strenghtening post-condition

- \(\phi \Rightarrow \phi_1 \)
 \(\{ \phi_1 \} P \{ \psi_1 \} \)
 \(\psi_1 \Rightarrow \psi \)

 \(\{ \phi \} P \{ \psi \} \)
Some Structural Rules

Structural rules do not depend on program statements.

\[
\begin{align*}
\{\phi_1\} P\{\psi_1\} & \quad \{\phi_2\} P\{\psi_2\} \\
\{\phi_1 \land \phi_2\} P\{\psi_1 \land \psi_2\} \\
\{\phi_1\} P\{\psi_1\} & \quad \{\phi_2\} P\{\psi_2\} \\
\{\phi_1 \lor \phi_2\} P\{\psi_1 \lor \psi_2\} \\
\{\phi\} P\{\psi\} & \\
\{\exists v.\phi\} P\{\exists v.\psi\} \\
\{\phi\} P\{\psi\} & \\
\{\forall v.\phi\} P\{\forall v.\psi\}
\end{align*}
\]

Conjunction
Disjunction
Existential Quantification \((\nu \text{ is not free in } P)\)
Universal Quantification \((\nu \text{ is not free in } P)\)
Proving properties of simple programs

Let \(P \): Sequence of executable statements in bar

\[
\begin{align*}
P &::= k := 0; \\
& \quad \quad j := 1; \\
& \quad \quad \text{while } (k \neq n) \{ \\
& \quad \quad \quad k := k + 1; \\
& \quad \quad \quad j := 2 + j; \\
& \quad \quad \}
\end{align*}
\]

Our goal is to prove the validity of \(\{ n > 0 \} \) \(P \) \(\{ j = 1 + 2 \cdot n \} \)
A Hoare logic proof

Sequential composition rule will give us a proof if we can fill in the template:

\[
\begin{align*}
\{n > 0\} & \quad \text{Precondition} \\
k := 0 & \quad \text{Midcondition} \\
\{\varphi_1\} & \quad \text{Midcondition} \\
j := 1 & \\
\{\varphi_2\} & \\
\text{while } (k != n) \{ k := k+1; j := 2+j \} & \\
\{j = 1 + 2.n\} & \quad \text{Postcondition}
\end{align*}
\]

- How do we prove \(\{\varphi_2\} \quad \text{while } (k != n) \{ k := k+1; j := 2+j \} \{j = 1 + 2.n\} \)?
- Recall rule for loops requires a loop invariant
- “Guess” a loop invariant \(j = 1 + 2.k \)
A Hoare logic proof

To prove:
\{ \varphi_2 \} \text{ while } (k \neq n) \ k := k+1; \ j := 2+j \ \{ j = 1 + 2.n \}
using loop invariant \ (j = 1 + 2.k)\)

If we can show:
- \varphi_2 \Rightarrow (j = 1 + 2.k)
- \{(j = 1 + 2.k) \land (k \neq n)\} \ k := k+1; \ j := 2+j \ \{ j = 1 + 2.k \}
- ((j = 1 + 2.k) \land \neg(k \neq n)) \Rightarrow (j = 1 + 2.n)

then

By inference rule for loops
\{(j = 1 + 2.k) \land (k \neq n)\} \ k := k+1; \ j := 2+j \ \{ j = 1 + 2.k \}
\{j = 1 + 2.k\} \text{ while } (k \neq n) \ k := k+1; \ j := 2+j \ \{(j = 1 + 2.k) \land \neg(k \neq n)\}

By inference rule for strengthening precedents and weakening consequents
\varphi_2 \Rightarrow (j = 1 + 2.k)
\{j = 1 + 2.k\} \text{ while } (k \neq n) \ k := k+1; \ j := 2+j \ \{(j = 1 + 2.k) \land \neg(k \neq n)\}
((j = 1 + 2.k) \land \neg(k \neq n)) \Rightarrow (j = 1 + 2.n)
\{\varphi_2\} \text{ while } (k \neq n) \ k := k+1; \ j := 2+j \ \{(j = 1 + 2.n)\}
A Hoare logic proof

How do we show:

- $\varphi_2 \Rightarrow (j = 1 + 2.k)$
- $\{ (j = 1 + 2.k) \land (k \neq n) \} \quad k := k+1; \quad j := 2+j \quad \{ j = 1 + 2.k \}$
- $((j = 1 + 2.k) \land \neg(k \neq n)) \Rightarrow (j = 1 + 2.n)$

Note:

- $\varphi_2 \Rightarrow (j = 1 + 2.k)$ holds trivially if φ_2 is $(j = 1 + 2.k)$
- $((j = 1 + 2.k) \land \neg(k \neq n)) \Rightarrow (j = 1 + 2.n)$ holds trivially in integer arithmetic

Only remaining proof subgoal:

$\{ (j = 1 + 2.k) \land (k \neq n) \} \quad k := k+1; \quad j := 2+j \quad \{ j = 1 + 2.k \}$
A Hoare logic proof

To show:
\[(j = 1 + 2.\,k) \land (k \neq n) \]
\[k := k+1; \; j := 2+j \quad \{ j = 1 + 2.\,k \} \]

Applying assignment rule twice
\[\{2 + j = 1 + 2.\,k\} \quad j := 2+j \quad \{ j = 1 + 2k \} \]
\[\{2 + j = 1 + 2.(k + 1)\} \quad k := k+1 \quad \{ 2 + j = 1 + 2.\,k \} \]

Simplifying and applying sequential composition rule
\[\{1 + j = 2.\,k\} \quad j := 2+j \quad \{ j = 1 + 2k \} \]
\[\{j = 1 + 2.\,k)\} \quad k := k+1 \quad \{1 + j = 2.\,k\} \]
\[\{j = 1 + 2.\,k\} \quad k := k+1; \; j := 2+j \quad \{ j = 1 + 2k \} \]

Applying rule for strengthening precedent
\[(j = 1 + 2.\,k) \land (k \neq n) \Rightarrow (j = 1 + 2.\,k) \]
\[\{j = 1 + 2.\,k\} \quad k := k+1; \; j := 2+j \quad \{ j = 1 + 2k \} \]
\[\{(j = 1 + 2.\,k) \land (k \neq n)\} \quad k := k+1; \; j := 2+j \quad \{ j = 1 + 2k \} \]
A Hoare logic proof

We have thus shown that with φ_2 as $(j = 1 + 2 \cdot k)$

\[
\{\varphi_2\} \text{ while } (k \neq n) \ k := k+1; \ j := 2+j \ \{j = 1 + 2 \cdot n\} \text{ is valid}
\]

Recall our template:

\[
\begin{align*}
\{ n > 0 \} & \quad \text{Precondition} \\
\quad k := 0 & \quad \text{Midcondition} \\
\quad \{ \varphi_1 \} & \quad \text{Midcondition} \\
\quad j := 1 & \quad \text{Midcondition} \\
\quad \{ \varphi_2 : j = 1 + 2 \cdot k \} & \\
\text{while } (k \neq n) \ k := k+1; \ j := 2+j & \quad \text{Postcondition} \\
\quad \{ j = 1 + 2 \cdot n \}
\end{align*}
\]

The only missing link now is to show

\[
\begin{align*}
\{ n > 0 \} & \quad k := 0 \quad \{ \varphi_1 \} \text{ and} \\
\{ \varphi_1 \} & \quad j := 1 \quad \{ j = 1 + 2 \cdot k \}
\end{align*}
\]
A Hoare logic proof

To show
\{ n > 0 \} k := 0 \{ \varphi_1 \} and
\{ \varphi_1 \} j := 1 \{ j = 1 + 2.k \}

Applying assignment rule twice and simplifying:
\{ 0 = k \} j := 1 \{ j = 1 + 2.k \}
\{ true \} k := 0 \{ 0 = k \}

Choose \varphi_1 as (k = 0), so \{ \varphi_1 \} j := 1 \{ j = 1 + 2.k \} holds.

Applying rule for strengthening precedent:
\((n > 0) \Rightarrow true \)
\{ true \} k := 0 \{ \varphi_1 : k = 0 \}
\{ n > 0 \} k := 0 \{ \varphi_1 : k = 0 \}

We have proved partial correctness of function bar in Hoare Logic !!!
Is Hoare Logic **sound**?
Is Hoare Logic **sound**?

- Yes. Very much!
Is Hoare Logic **sound**?
- Yes. Very much!

Is Hoare Logic **complete**?
Is Hoare Logic **sound**?
▶ Yes. Very much!

Is Hoare Logic **complete**?
▶ Sort of..
▶ **Relatively** Complete
Outline

1 Introduction
 • Bird’s Eye View
 • Formal Introduction

2 Preliminaries
 • A simple Imperative Language
 • A simple assertion Language
 • Assertion Semantics
 • Example Program

3 Hoare Logic
 • Hoare Triples: Syntax and Semantics
 • Axioms

4 Soundness and Completeness
 • Soundness
 • Relative Completeness
 • Weakest Precondition
Soundness of Hoare Logic
Soundness of Hoare Logic

- Hoare Logic has a **sound** proof system
Soundness of Hoare Logic

- Hoare Logic has a **sound** proof system
- That is, each theorem in Hoare Logic is valid:
Soundness of Hoare Logic

- Hoare Logic has a sound proof system
- That is, each theorem in Hoare Logic is valid:

\[\vdash \{ \phi \} P \{ \psi \}, \text{ then } \models \{ \phi \} P \{ \psi \} \]
Soundness of Hoare Logic

- Hoare Logic has a sound proof system
- That is, each theorem in Hoare Logic is valid:

\[\vdash \{ \phi \} P \{ \psi \} , \text{ then } \models \{ \phi \} P \{ \psi \} \]

- Follows from soundness of Hoare rules (axioms).
Soundness of Hoare Logic

- Hoare Logic has a sound proof system
- That is, each theorem in Hoare Logic is valid:

\[\vdash \{\phi\} P\{\psi\} , \text{ then } \models \{\phi\} P\{\psi\} \]

- Follows from soundness of Hoare rules (axioms).
- Reason about the number of steps required to terminate loop for the loop rule.
Soundness of Hoare Logic

- Hoare Logic has a **sound** proof system
- That is, each theorem in Hoare Logic is valid:

 \[
 \text{If } \vdash \{\phi\} P \{\psi\}, \text{ then } \models \{\phi\} P \{\psi\}
 \]

- Follows from soundness of Hoare rules (axioms).
- Reason about the number of steps required to terminate loop for the *loop* rule.
- Then use induction on the structure of the proof tree.
Outline

1 Introduction
 - Bird’s Eye View
 - Formal Introduction

2 Preliminaries
 - A simple Imperative Language
 - A simple assertion Language
 - Assertion Semantics
 - Example Program

3 Hoare Logic
 - Hoare Triples: Syntax and Semantics
 - Axioms

4 Soundness and Completeness
 - Soundness
 - Relative Completeness
 - Weakest Precondition
Relative Completeness of Hoare Logic
Relative Completeness of Hoare Logic

Hoare logic is relatively complete.
Relative Completeness of Hoare Logic

Hoare logic is relatively complete.

Theorem (Cook, 1974)

If there is a complete proof system for proving assertions in the underlying logic, then all valid Hoare triples have a proof
Relative Completeness of Hoare Logic

Hoare logic is relatively complete.

Theorem (Cook, 1974)

If there is a complete proof system for proving assertions in the underlying logic, then all valid Hoare triples have a proof

- First Order Logic is incomplete! (Kurt Gödel)
Hoare logic is relatively complete.

Theorem (Cook, 1974)

If there is a complete proof system for proving assertions in the underlying logic, then all valid Hoare triples have a proof

- First Order Logic is incomplete! (Kurt Gödel)
- The result uses *weakest pre-condition*
Outline

1 Introduction
 - Bird’s Eye View
 - Formal Introduction

2 Preliminaries
 - A simple Imperative Language
 - A simple assertion Language
 - Assertion Semantics
 - Example Program

3 Hoare Logic
 - Hoare Triples: Syntax and Semantics
 - Axioms

4 Soundness and Completeness
 - Soundness
 - Relative Completeness
 - Weakest Precondition
Weakest Precondition
Weakest Precondition

- Intuitively, the **largest set of states** (represented as an assertion) starting from which if a program P is executed, the resulting states satisfy a given post-condition ψ. ($wp(P, \psi)$)
Weakest Precondition

- Intuitively, the **largest set of states** (represented as an assertion) starting from which if a program \(P \) is executed, the resulting states satisfy a given post-condition \(\psi \). \((wp(P, \psi))\)

Definition (Weakest Precondition)

Given program \(P \) and postcondition \(\psi \), a weakest precondition \(wcp(P, \psi) \) is an assertion such that
Weakest Precondition

- Intuitively, the **largest set of states** (represented as an assertion) starting from which if a program P is executed, the resulting states satisfy a given post-condition ψ. ($wp(P, \psi)$)

Definition (Weakest Precondition)

Given program P and postcondition ψ, a weakest precondition $wcp(P, \psi)$ is an assertion such that

- it is a precondition: $\models \{wp(P, \psi)\} P \{\psi\}$
Weakest Precondition

- Intuitively, the **largest set of states** (represented as an assertion) starting from which if a program P is executed, the resulting states satisfy a given post-condition ψ. ($wp(P, \psi)$)

Definition (Weakest Precondition)

Given program P and postcondition ψ, a weakest precondition $wcp(P, \psi)$ is an assertion such that

- it is a precondition: $\models \{ wp(P, \psi) \} P \{ \psi \}$
- Is weakest, i.e., for any assertion ϕ, if $\models \{ \phi \} P \{ \psi \}$, then $\models \phi \Rightarrow wp(P, \psi)$
Weakest Precondition

- Intuitively, the **largest set of states** (represented as an assertion) starting from which if a program \(P \) is executed, the resulting states satisfy a given post-condition \(\psi \). \((wp(P, \psi)) \)

Definition (Weakest Precondition)

Given program \(P \) and postcondition \(\psi \), a weakest precondition \(wcp(P, \psi) \) is an assertion such that

- it is a precondition: \(\models \{wp(P, \psi)\} P \{\psi\} \)
- Is weakest, i.e., for any assertion \(\phi \), if \(\models \{\phi\} P \{\psi\} \), then \(\models \phi \Rightarrow wp(P, \psi) \)

- Weakest precondition:
Weakest Precondition

- Intuitively, the **largest set of states** (represented as an assertion) starting from which if a program P is executed, the resulting states satisfy a given post-condition ψ. ($wp(P, \psi)$)

Definition (Weakest Precondition)

Given program P and postcondition ψ, a weakest precondition $wcp(P, \psi)$ is an assertion such that

- it is a precondition: $\models \{wp(P, \psi)\} P \{\psi\}$
- Is weakest, i.e., for any assertion ϕ, if $\models \{\phi\} P \{\psi\}$, then $\models \phi \Rightarrow wp(P, \psi)$

- Weakest precondition:
 - exists
Weakest Precondition

Intuitively, the **largest set of states** (represented as an assertion) starting from which if a program P is executed, the resulting states satisfy a given post-condition ψ. ($wp(P, \psi)$)

Definition (Weakest Precondition)

Given program P and postcondition ψ, a weakest precondition $wcp(P, \psi)$ is an assertion such that

- it is a precondition: $\models \{wp(P, \psi)\} P \{\psi\}$
- Is weakest, i.e., for any assertion ϕ, if $\models \{\phi\} P \{\psi\}$, then $\models \phi \Rightarrow wp(P, \psi)$

Weakest precondition:

- exists
- is unique, up to equivalence of assertions
Weakest Precondition

- Intuitively, the **largest set of states** (represented as an assertion) starting from which if a program P is executed, the resulting states satisfy a given post-condition ψ. ($wp(P, \psi)$)

Definition (Weakest Precondition)

Given program P and postcondition ψ, a weakest precondition $wcp(P, \psi)$ is an assertion such that

- it is a precondition: $\models \{wp(P, \psi)\} P \{\psi\}$
- Is weakest, i.e., for any assertion ϕ, if $\models \{\phi\} P \{\psi\}$, then $\models \phi \Rightarrow wp(P, \psi)$

- **Weakest precondition:**
 - exists
 - is unique, upto equivalence of assertions
 - can be expressed in our Assertion logic
Weakest Precondition

- Intuitively, the **largest set of states** (represented as an assertion) starting from which if a program P is executed, the resulting states satisfy a given post-condition ψ. ($wp(P, \psi)$)

Definition (Weakest Precondition)

Given program P and postcondition ψ, a weakest precondition $wcp(P, \psi)$ is an assertion such that

- it is a precondition: $\models \{ wp(P, \psi) \} P \{ \psi \}$
- Is weakest, i.e., for any assertion ϕ, if $\models \{ \phi \} P \{ \psi \}$, then $\models \phi \Rightarrow wp(P, \psi)$

Weakest precondition:

- exists
- is unique, upto equivalence of assertions
- can be expressed in our Assertion logic
- Can be proved to be a precondition using Hoare logic
 $\models \{ wp(P, \psi) \} P \{ \psi \}$
Weakest Precondition

- Intuitively, the **largest set of states** (represented as an assertion) starting from which if a program P is executed, the resulting states satisfy a given post-condition ψ. ($wp(P, \psi)$)

Definition (Weakest Precondition)

Given program P and postcondition ψ, a weakest precondition $wcp(P, \psi)$ is an assertion such that

- it is a precondition: $\models \{wp(P, \psi)\} P \{\psi\}$
- Is weakest, i.e., for any assertion ϕ, if $\models \{\phi\} P \{\psi\}$, then $\models \phi \Rightarrow wp(P, \psi)$

Weakest precondition:

- exists
- is unique, upto equivalence of assertions
- can be expressed in our Assertion logic
- Can be proved to be a precondition using Hoare logic
- $\models \{wp(P, \psi)\} P \{\psi\}$
Existence: Weakest Preconditions for Basic Constructs
Existence: Weakest Preconditions for Basic Constructs

- Assignment:
 \[wp(x := E, \psi) = \psi([x \leftarrow E]) \]
Existence: Weakest Preconditions for Basic Constructs

- Assignment:
 \[wp(x := E, \psi) = \psi([x \leftarrow E]) \]

- Sequential Composition:
 \[wp(P_1; P_2, \psi) = wp(P_1, wp(P_2, \psi)) \]
Existence: Weakest Preconditions for Basic Constructs

- **Assignment:**
 \[wp(x := E, \psi) = \psi([x \leftarrow E]) \]

- **Sequential Composition:**
 \[wp(P_1; P_2, \psi) = wp(P_1, wp(P_2, \psi)) \]

- **Conditional Statements:**
 \[wp(\text{if } B \text{ then } P_1 \text{ else } P_2, \psi) = (B \land wp(P_1, \psi)) \lor (\neg B \land wp(P_2, \psi)) \]
Existence: Weakest Preconditions for Basic Constructs

- **Assignment:**
 \[wp(x := E, \psi) = \psi([x \leftarrow E]) \]

- **Sequential Composition:**
 \[wp(P_1; P_2, \psi) = wp(P_1, wp(P_2, \psi)) \]

- **Conditional Statements:**
 \[wp(\text{if } B \text{ then } P_1 \text{ else } P_2, \psi) = (B \land wp(P_1, \psi)) \lor (\neg B \land wp(P_2, \psi)) \]

- **Loops:**
 \[wp(\text{while } B \ P, \psi) = \bigwedge_{k \geq 0} \phi_k \]
Existence: Weakest Preconditions for Basic Constructs

- **Assignment:**
 \[wp(x := E, \psi) = \psi([x \leftarrow E]) \]

- **Sequential Composition:**
 \[wp(P_1; P_2, \psi) = wp(P_1, wp(P_2, \psi)) \]

- **Conditional Statements:**
 \[wp(\text{if } B \text{ then } P_1 \text{ else } P_2, \psi) = (B \land wp(P_1, \psi)) \lor (\neg B \land wp(P_2, \psi)) \]

- **Loops:**
 \[wp(\text{while } B \ P, \psi) = \bigwedge_{k\geq0} \phi_k \]
 - \[\phi_0 = \text{true} \]
 - \[\phi_{k+1} = (B \land wp(P, \phi_k)) \lor (\neg B \land \psi) \]
Existence: Weakest Preconditions for Basic Constructs

- **Assignment:**
 \[wp(x := E, \psi) = \psi([x \gets E]) \]

- **Sequential Composition:**
 \[wp(P_1; P_2, \psi) = wp(P_1, wp(P_2, \psi)) \]

- **Conditional Statements:**
 \[wp(\text{if } B \text{ then } P_1 \text{ else } P_2, \psi) = (B \land wp(P_1, \psi)) \lor (\neg B \land wp(P_2, \psi)) \]

- **Loops:**
 \[wp(\text{while } B \ P, \psi) = \bigwedge_{k \geq 0} \phi_k \]
 - \[\phi_0 = \text{true} \]
 - \[\phi_{k+1} = (B \land wp(P, \phi_k)) \lor (\neg B \land \psi) \]
 - Can be expressed as an assertion (Gödel’s β function)
If $\models \{\phi\} P \{\psi\}$, then $\vdash \{\phi\} P \{\psi\}$
Back to Relative Completeness

If $\models \{ \phi \} P \{ \psi \}$, then $\vdash \{ \phi \} P \{ \psi \}$

- Existence and provability of weakest pre-condition:
 $\vdash \{ wp(P, \psi) \} P \{ \psi \}$
Back to Relative Completeness

If $\models \{\phi\} P \{\psi\}$, then $\vdash \{\phi\} P \{\psi\}$

- Existence and provability of weakest pre-condition:

 $\vdash \{wp(P, \psi)\} P \{\psi\}$

Here, $\{wp(P, \psi)\}$ is expressed in our base logic
Back to Relative Completeness

If \(\models \{ \phi \} P \{ \psi \} \), then \(\vdash \{ \phi \} P \{ \psi \} \)

- Existence and provability of weakest pre-condition:
 \[\vdash \{ wp(P, \psi) \} P \{ \psi \} \]

Here, \(\{ wp(P, \psi) \} \) is expressed in our base logic

- From definition of weakest precondition:
 \[\models \phi \Rightarrow \{ wp(P, \psi) \} P \{ \psi \} \]
Back to Relative Completeness

If \(\models \{ \phi \} P \{ \psi \} \), then \(\vdash \{ \phi \} P \{ \psi \} \)

- Existence and provability of weakest pre-condition:
 \(\vdash \{ wp(P, \psi) \} P \{ \psi \} \)

Here, \(\{ wp(P, \psi) \} \) is expressed in our base logic

- From definition of weakest precondition:
 \(\models \phi \Rightarrow \{ wp(P, \psi) \} P \{ \psi \} \)

- By assumption of completeness in base logic:
 \(\vdash \phi \Rightarrow \{ wp(P, \psi) \} P \{ \psi \} \)
If $\models \{\phi\} P \{\psi\}$, then $\vdash \{\phi\} P \{\psi\}$

- Existence and provability of weakest pre-condition:
 $\vdash \{wp(P, \psi)\} P \{\psi\}$

 Here, $\{wp(P, \psi)\}$ is expressed in our base logic

- From definition of weakest precondition:
 $\models \phi \Rightarrow \{wp(P, \psi)\} P \{\psi\}$

- By assumption of completeness in base logic:
 $\vdash \phi \Rightarrow \{wp(P, \psi)\} P \{\psi\}$

- Now, the proof for relative completeness goes like:
 $\vdash \phi \Rightarrow \{wp(P, \psi)\} P \{\psi\}$
Conclusions and Interesting Insights
Conclusions and Interesting Insights

- Formalism to verify Hoare triples
Conclusions and Interesting Insights

- Formalism to verify Hoare triples
 - Design by contract
Conclusions and Interesting Insights

- Formalism to verify Hoare triples
 - Design by contract
- Hoare Logic not only gives a formalism to verify Hoare triples, but also describes a method to come up with *good enough* pre (post) conditions.
Conclusions and Interesting Insights

- Formalism to verify Hoare triples
 - Design by contract
- Hoare Logic not only gives a formalism to verify Hoare triples, but also describes a method to come up with *good enough* pre (post) conditions.
 - Can be used to design specifications / documentations of programs
Conclusions and Interesting Insights

- Formalism to verify Hoare triples
 - Design by contract
- Hoare Logic not only gives a formalism to verify Hoare triples, but also describes a method to come up with *good enough* pre (post) conditions.
 - Can be used to design specifications / documentations of programs
- Given pre-condition ϕ, postcondition ψ, can we come up with a program P such that $\{\phi\}P\{\psi\}$ holds?
Conclusions and Interesting Insights

- Formalism to verify Hoare triples
 - Design by contract
- Hoare Logic not only gives a formalism to verify Hoare triples, but also describes a method to come up with *good enough* pre (post) conditions.
 - Can be used to design specifications / documentations of programs
- Given pre-condition ϕ, postcondition ψ, can we come up with a program P such that $\{\phi\}P\{\psi\}$ holds?
- Invariant synthesis
Conclusions and Interesting Insights

- Formalism to verify Hoare triples
 - Design by contract
- Hoare Logic not only gives a formalism to verify Hoare triples, but also describes a method to come up with *good enough* pre (post) conditions.
 - Can be used to design specifications / documentations of programs
- Given pre-condition ϕ, postcondition ψ, can we come up with a program P such that $\{\phi\}P\{\psi\}$ holds?
- Invariant synthesis

Other interesting followups:
Conclusions and Interesting Insights

- Formalism to verify Hoare triples
 - Design by contract
- Hoare Logic not only gives a formalism to verify Hoare triples, but also describes a method to come up with *good enough* pre (post) conditions.
 - Can be used to design specifications / documentations of programs
- Given pre-condition ϕ, postcondition ψ, can we come up with a program P such that $\{\phi\}P\{\psi\}$ holds?

Other interesting followups:
- Axiomatic approach for (possibly recursive) procedures
Conclusions and Interesting Insights

- Formalism to verify Hoare triples
 - Design by contract
- Hoare Logic not only gives a formalism to verify Hoare triples, but also describes a method to come up with *good enough* pre (post) conditions.
 - Can be used to design specifications / documentations of programs
- Given pre-condition ϕ, postcondition ψ, can we come up with a program P such that $\{\phi\} P \{\psi\}$ holds?
- Invariant synthesis

Other interesting followups:
- Axiomatic approach for (possibly recursive) procedures
- Concurrency
Conclusions and Interesting Insights

- Formalism to verify Hoare triples
 - Design by contract
- Hoare Logic not only gives a formalism to verify Hoare triples, but also describes a method to come up with *good enough* pre (post) conditions.
 - Can be used to design specifications / documentations of programs
- Given pre-condition \(\phi \), postcondition \(\psi \), can we come up with a program \(P \) such that \(\{ \phi \} P \{ \psi \} \) holds?
- Invariant synthesis

Other interesting followups:
- Axiomatic approach for (possibly recursive) procedures
- Concurrency
- Termination of loops: *variants*
References

C. A. R. Hoare.
An axiomatic basis for computer programming.
Commun. ACM 12, 10 (October 1969), 576-580.

Robert Floyd
Assigning Meanings to Programs

Supratik Chakraborty
A Short Introduction on Hoare Logic
www.cse.iitb.ac.in/~supratik/courses/cs615/msri_ss08.pdf

Radu Rugina
Lecture Notes, CS 611: Advanced Programming Languages
www.cs.cornell.edu/courses/cs611/2002fa/schedule.html